Open Access
Issue
E3S Web Conf.
Volume 448, 2023
The 8th International Conference on Energy, Environment, Epidemiology and Information System (ICENIS 2023)
Article Number 02004
Number of page(s) 10
Section Information System
DOI https://doi.org/10.1051/e3sconf/202344802004
Published online 17 November 2023
  1. Jazuli A, Latubessy A, Nindyasari R. Arsitektur Web Service Di Lembaga Pendidikan Ma’Arif Demak. Indones J Technol Informatics Sci. 2nd ed. 2021;2(2):67–70. [CrossRef] [Google Scholar]
  2. Karaoglan Yilmaz FG, Yilmaz R. Learning Analytics Intervention Improves Students' Engagement in Online Learning. Technol Knowl Learn. 2021;(0123456789). [Google Scholar]
  3. Kastrati Z, Dalipi F, Imran AS, Nuci KP, Wani MA. Sentiment analysis of students' feedback with nlp and deep learning: A systematic mapping study. Appl Sci. 2021;11(9). [Google Scholar]
  4. Salazar C, Aguilar J, Monsalve-Pulido J, Montoya E. Affective recommender systems in the educational field. A systematic literature review. Comput Sci Rev [Internet]. 2021;40:100377. Available from: https://doi.org/10.1016/j.cosrev.2021.100377 [Google Scholar]
  5. Liu Y, Soroka A, Han L, Jian J, Tang M. Cloud-based big data analytics for customer insight-driven design innovation in SMEs. Int J Inf Manage [Internet]. 2020;51(November 2019):102034. Available from: https://doi.org/10.1016/j.ijinfomgt.2019.11.002 [Google Scholar]
  6. Mehbodniya A, Rao MV, David LG, Joe Nige KG, Vennam P. Online product sentiment analysis using random evolutionary whale optimization algorithm and deep belief network. Pattern Recognit Lett. 2022;159:1–8. [CrossRef] [Google Scholar]
  7. Žitnik S, Blagus N, Bajec M. Target-level sentiment analysis for news articles. Knowledge-Based Syst. 2022;249:108939. [CrossRef] [Google Scholar]
  8. Yan H, Dai J, Ji T, Qiu X, Zhang Z. A Unified Generative Framework for Aspect-based Sentiment Analysis. 2021;2416–29. [Google Scholar]
  9. Abdi A, Hasan S, Shamsuddin SM, Idris N, Piran J. A hybrid deep learning architecture for opinion-oriented multi-document summarization based on multi-feature fusion. Knowledge-Based Syst [Internet]. 2021;213:106658. Available from: https://doi.org/10.1016/j.knosys.2020.106658 [CrossRef] [Google Scholar]
  10. Ahmad Jazuli TKR. Analisis Sentimen Terhadap Xiaomi Indonesia Menggunakan Naïve Bayes Method. Indones J Technol Informatics Sci [Internet]. 3rd ed. 2021;3(1):21–9. Available from: https://jurnal.umk.ac.id/index.php/ijtis/article/view/7514/pdf [CrossRef] [Google Scholar]
  11. Abella A, Araya León M, Marco-Almagro L, Clèries Garcia L. Perception evaluation kit: a case study with materials and learning styles. Int J Technol Des Educ.2021;(0123456789). [Google Scholar]
  12. Nurdin A, Anggo Seno Aji B, Bustamin A, Abidin Z. Perbandingan Kinerja Word Embedding Word2Vec, Glove, Dan Fasttext Pada Klasifikasi Teks. J Tekno Kompak. 2020;14(2):74. [CrossRef] [Google Scholar]
  13. Rajaguru H, Sannasi Chakravarthy SR. Analysis of decision tree and k-nearest neighbor algorithm in the classification of breast cancer. Vol. 20, Asian Pacific Journal of Cancer Prevention. 2019. p. 3777–81. [Google Scholar]
  14. Idrus. Evaluasi Dalam Proses Pembelajaran. Eval Dalam Proses Pembelajaran. 2019;9(2):920–35. [Google Scholar]
  15. KULKARNI SM, SUNDARI G. Comparative analysis of performance of deep cnn based framework for brain mri classification using transfer learning. J Eng Sci Technol. 2021;16(4):2901–17. [Google Scholar]
  16. Agüero-Torales MM, Abreu Salas JI, López-Herrera AG. Deep learning and multilingual sentiment analysis on social media data: An overview. Appl Soft Comput. 2021;107. [Google Scholar]
  17. Süzen N, Gorban AN, Levesley J, Mirkes EM. Automatic short answer grading and feedback using text mining methods. Procedia Comput Sci [Internet]. 2020;169(2019):726–43. Available from: https://doi.org/10.1016/j.procs.2020.02.171 [CrossRef] [Google Scholar]
  18. Mohamad Beigi O, Moattar MH. Automatic construction of domain-specific sentiment lexicon for unsupervised domain adaptation and sentiment classification. Knowledge-Based Syst [Internet]. 2020;213(xxxx):106423. Available from: https://doi.org/10.1016/j.knosys.2020.106423 [Google Scholar]
  19. Ribeiro D, Matos LM, Moreira G, Pilastri A, Cortez P. Isolation Forests and Deep Autoencoders for Industrial Screw Tightening Anomaly Detection. Computers. 2022;11(4):1–15. [Google Scholar]
  20. Skarpathiotaki CG, Psannis KE. Cross-Industry Process Standardization for Text Analytics. Big Data Res. 2022;27(2). [Google Scholar]
  21. Qi B, Costin A, Jia M. A framework with efficient extraction and analysis of Twitter data for evaluating public opinions on transportation services. Travel Behav Soc [Internet]. 2020;21(December 2019):10–23. Available from: https://doi.org/10.1016/j.tbs.2020.05.005 [Google Scholar]
  22. Liu MZ, Zhou FY, Chen K, Zhao Y. Co-attention networks based on aspect and context for aspect-level sentiment analysis. Knowledge-Based Syst. 2021;217. [Google Scholar]
  23. Kognisi PK, Risiko P, Jenis DAN, Bidori F, Puspitowati LI dan I, Wijaya IGB, et al. No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title. Ind High Educ [Internet]. 2021;3(1):1689–99. Available from: http://journal.unilak.ac.id/index.php/JIEB/article/view/3845%0Ahttp://dspace.uc.ac.id/handle/123456789/1288 [Google Scholar]
  24. Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M, et al. Exploring the limits of transfer learning with a unified text-to-text transformer. J Mach Learn Res. 2020;21:1–67. [Google Scholar]
  25. Fudholi DH, Nayoan RAN, Hidayatullah AF, Arianto DB. a Hybrid Cnn-Bilstm Model for Drug Named Entity Recognition. J Eng Sci Technol. 2022;17(1):730–44. [Google Scholar]
  26. Da'u A, Salim N, Rabiu I, Osman A. Weighted aspect-based opinion mining using deep learning for recommender system. Expert Syst Appl. 2020;140. [Google Scholar]
  27. Corso MP, Perez FL, Stefenon SF, Yow KC, Ovejero RG, Leithardt VRQ. Classification of contaminated insulators using k-nearest neighbors based on computer vision. Computers. 2021;10(9):1–18. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.