Open Access
Issue
E3S Web Conf.
Volume 448, 2023
The 8th International Conference on Energy, Environment, Epidemiology and Information System (ICENIS 2023)
Article Number 02009
Number of page(s) 9
Section Information System
DOI https://doi.org/10.1051/e3sconf/202344802009
Published online 17 November 2023
  1. S. Wang et al., “Identification of several inflammation-related genes based on bioinformatics and experiments,” Int Immunopharmacol, vol. 121, no. November 2022, 2023, doi: 10.1016/j.intimp.2023.110409. [Google Scholar]
  2. J. Li, C.-N. Lan, Y. Kong, S.-S. Feng, and T. Huang, “Identification and analysis of blood gene expression signature for osteoarthritis with advanced feature selection methods,” Front Genet, vol. 9, no. AUG, 2018, doi: 10.3389/fgene.2018.00246. [Google Scholar]
  3. J. Meng, H. Du, H. Lv, J. Lu, J. Li, and J. Yao, “Identification of the osteoarthritis signature gene PDK1 by machine learning and its regulatory mechanisms on chondrocyte autophagy and apoptosis,” Front Immunol, vol. 13, no. January, pp. 1–16, 2023, doi: 10.3389/fimmu.2022.1072526. [Google Scholar]
  4. H. Bonakdari, J.-P. Pelletier, F. Abram, and J. Martel-Pelletier, “A Machine Learning Model to Predict Knee Osteoarthritis Cartilage Volume Changes over Time Using Baseline Bone Curvature,” Biomedicines, vol. 10, no. 6, 2022, doi: 10.3390/biomedicines10061247. [CrossRef] [PubMed] [Google Scholar]
  5. W. P. Gielis et al., “An automated workflow based on hip shape improves personalized risk prediction for hip osteoarthritis in the CHECK study,” Osteoarthritis Cartilage, vol. 28, no. 1, pp. 62–70, 2020, doi: 10.1016/j.joca.2019.09.005. [CrossRef] [PubMed] [Google Scholar]
  6. P. B. McLendon et al., “Machine Learning Can Predict Level of Improvement in Shoulder Arthroplasty,” JBJS Open Access, vol. 6, no. 1, 2021, doi: 10.2106/jbjs.oa.20.00128. [CrossRef] [Google Scholar]
  7. W. S. Almuhammadi, E. Agu, J. King, and P. Franklin, “OA-Pain-Sense: Machine Learning Prediction of Hip and Knee Osteoarthritis Pain from IMU Data,” Informatics, vol. 9, no. 4, Dec. 2022, doi: 10.3390/informatics9040097. [CrossRef] [Google Scholar]
  8. A. Y. Bhat and A. Suhasini, “Normal and abnormal detection for knee osteoarthritis using machine learning techniques,” International Journal of Recent Technology and Engineering, vol. 8, no. 2, pp. 6026–6033, 2019, doi: 10.35940/ijrte.B3733.078219. [Google Scholar]
  9. L. Liu et al., “A joint multi-modal learning method for early-stage knee osteoarthritis disease classification,” Heliyon, vol. 9, no. 4, p. e15461, 2023, doi: https://doi.org/10.1016/j.heliyon.2023.e15461. [CrossRef] [PubMed] [Google Scholar]
  10. A. Jamshidi, J.-P. Pelletier, and J. Martel-Pelletier, “Machine-learning-based patient-specific prediction models for knee osteoarthritis,” Nat Rev Rheumatol, vol. 15, no. 1, pp. 49–60, 2019, doi: 10.1038/s41584-018-0130-5. [CrossRef] [PubMed] [Google Scholar]
  11. Y. Wu, L. Li, B. Xin, Q. Hu, X. Dong, and Z. Li, “Application of machine learning in personalized medicine,” Intelligent Pharmacy, no. May, 2023, doi: 10.1016/j.ipha.2023.06.004. [Google Scholar]
  12. J. Komuro, D. Kusumoto, H. Hashimoto, and S. Yuasa, “Machine learning in cardiology: Clinical application and basic research,” J Cardiol, vol. 82, no. 2, pp. 128–133, 2023, doi: 10.1016/j.jjcc.2023.04.020. [CrossRef] [PubMed] [Google Scholar]
  13. J. G. Greener, S. M. Kandathil, L. Moffat, and D. T. Jones, “A guide to machine learning for biologists,” Nat Rev Mol Cell Biol, vol. 23, no. 1, pp. 40–55, 2022, doi: 10.1038/s41580-021-00407-0. [CrossRef] [PubMed] [Google Scholar]
  14. X. Pan, E. Yan, M. Cui, and W. Hua, “Examining the usage, citation, and diffusion patterns of bibliometric mapping software: A comparative study of three tools,” J Informetr, vol. 12, no. 2, pp. 481–493, 2018, doi: 10.1016/j.joi.2018.03.005. [CrossRef] [Google Scholar]
  15. N. J. van Eck and L. Waltman, “Software survey: VOSviewer, a computer program for bibliometric mapping,” Scientometrics, vol. 84, no. 2, pp. 523–538, 2010, doi: 10.1007/s11192-009-0146-3. [CrossRef] [PubMed] [Google Scholar]
  16. L. Waltman, N. J. van Eck, and E. C. M. Noyons, “A unified approach to mapping and clustering of bibliometric networks,” J Informetr, vol. 4, no. 4, pp. 629–635, 2010, doi: 10.1016/j.joi.2010.07.002. [CrossRef] [Google Scholar]
  17. J. Meng, H. Du, H. Lv, J. Lu, J. Li, and J. Yao, “Identification of the osteoarthritis signature gene PDK1 by machine learning and its regulatory mechanisms on chondrocyte autophagy and apoptosis,” Front Immunol, vol. 13, no. January, pp. 1–16, 2023, doi: 10.3389/fimmu.2022.1072526. [Google Scholar]
  18. Y. Zhang et al., “Identification of Diagnostic Biomarkers of Osteoarthritis Based on Multi-Chip Integrated Analysis and Machine Learning,” DNA Cell Biol, vol. 39, no. 12, pp. 2245–2256, 2020, doi: 10.1089/dna.2020.5552. [CrossRef] [Google Scholar]
  19. J. Li et al., “Identification of immune-associated genes in diagnosing osteoarthritis with metabolic syndrome by integrated bioinformatics analysis and machine learning,” Front Immunol, vol. 14, no. April, p. 1134412, 2023, doi: 10.3389/fimmu.2023.1134412. [CrossRef] [PubMed] [Google Scholar]
  20. Y. Liang, F. Lin, and Y. Huang, “Identification of Biomarkers Associated with Diagnosis of Osteoarthritis Patients Based on Bioinformatics and Machine Learning,” J Immunol Res, vol. 2022, 2022, doi: 10.1155/2022/5600190. [Google Scholar]
  21. J. Xu et al., “Identification of Immune-Related Risk Genes in Osteoarthritis Based on Bioinformatics Analysis and Machine Learning,” J Pers Med, vol. 13, no. 2, 2023, doi: 10.3390/jpm13020367. [Google Scholar]
  22. C. Kokkotis, S. Moustakidis, G. Giakas, and D. Tsaopoulos, “Identification of risk factors and machine learning-based prediction models for knee osteoarthritis patients,” Applied Sciences (Switzerland), vol. 10, no. 19, 2020, doi: 10.3390/app10196797. [Google Scholar]
  23. A. Jamshidi et al., “Identification of the most important features of knee osteoarthritis structural progressors using machine learning methods,” Ther Adv Musculoskelet Dis, vol. 12, 2020, doi: 10.1177/1759720X20933468. [CrossRef] [Google Scholar]
  24. C. Kokkotis, S. Moustakidis, D. Tsaopoulos, V. Baltzopoulos, and G. Giakas, “Identifying robust risk factors for knee osteoarthritis progression: An evolutionary machine learning approach,” Healthcare (Switzerland), vol. 9, no. 3, 2021, doi: 10.3390/healthcare9030260. [Google Scholar]
  25. B. Mehta et al., “Machine learning identification of thresholds to discriminate osteoarthritis and rheumatoid arthritis synovial inflammation,” Arthritis Res Ther, vol. 25, no. 1, 2023, doi: 10.1186/s13075-023-03008-8. [CrossRef] [Google Scholar]
  26. D. Demanse et al., “Unsupervised machine-learning algorithms for the identification of clinical phenotypes in the osteoarthritis initiative database,” Semin Arthritis Rheum, vol. 58, p. 152140, 2023, doi: https://doi.org/10.1016/j.semarthrit.2022.152140. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.