Open Access
Issue |
E3S Web Conf.
Volume 448, 2023
The 8th International Conference on Energy, Environment, Epidemiology and Information System (ICENIS 2023)
|
|
---|---|---|
Article Number | 02014 | |
Number of page(s) | 10 | |
Section | Information System | |
DOI | https://doi.org/10.1051/e3sconf/202344802014 | |
Published online | 17 November 2023 |
- M. van Dijk, T. Morley, M. L. Rau, and Y. Saghai, “A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050,” Nat. Food, vol. 2, no. 7, pp. 494–501, 2021, doi: 10.1038/s43016-021-00322-9. [CrossRef] [Google Scholar]
- C. Govoni et al., “Global assessment of natural resources for chicken production,” Adv. Water Resour., vol. 154, no. December 2020, 2021, doi: 10.1016/j.advwatres.2021.103987. [CrossRef] [Google Scholar]
- F. L. S. Castro et al., “Poultry industry paradigms: connecting the dots,” J. Appl. Poult. Res., vol. 32, no. 1, 2023, doi: 10.1016/j.japr.2022.100310. [Google Scholar]
- X. Zhuang, M. Bi, J. Guo, S. Wu, and T. Zhang, “Development of an early warning algorithm to detect sick broilers,” Comput. Electron. Agric., vol. 144, pp. 102–113, 2018, doi: 10.1016/j.compag.2017.11.032. [CrossRef] [Google Scholar]
- C. Okinda et al., “A machine vision system for early detection and prediction of sick birds: A broiler chicken model,” Biosyst. Eng., vol. 188, pp. 229–242, 2019, doi: 10.1016/j.biosystemseng.2019.09.015. [CrossRef] [Google Scholar]
- X. Zhuang and T. Zhang, “Detection of sick broilers by digital image processing and deep learning,” Biosyst. Eng., vol. 179, pp. 106–116, 2019, doi: 10.1016/j.biosystemseng.2019.01.003. [CrossRef] [Google Scholar]
- K. Cuan, T. Zhang, Z. Li, J. Huang, Y. Ding, and C. Fang, “Automatic Newcastle disease detection using sound technology and deep learning method,” Comput. Electron. Agric., vol. 194, no. December 2021, 2022, doi: 10.1016/j.compag.2022.106740. [CrossRef] [Google Scholar]
- I. Nyalala, C. Okinda, C. Kunjie, T. Korohou, L. Nyalala, and Q. Chao, “Weight and volume estimation of poultry and products based on computer vision systems: a review,” Poult. Sci., vol. 100, no. 5, p. 101072, 2021, doi: 10.1016/j.psj.2021.101072. [CrossRef] [Google Scholar]
- W. Ma, Q. Li, J. Li, L. Ding, and Q. Yu, “A method for weighing broiler chickens using improved amplitude-limiting filtering algorithm and BP neural networks,” Inf. Process. Agric., vol. 8, no. 2, pp. 299–309, 2021, doi: 10.1016/j.inpa.2020.07.001. [Google Scholar]
- P. G. Tickle and J. R. Codd, “Thermoregulation in rapid growing broiler chickens is compromised by constraints on radiative and convective cooling performance,” J. Therm. Biol., vol. 79, no. October 2018, pp. 8–14, 2019, doi: 10.1016/j.jtherbio.2018.11.007. [CrossRef] [Google Scholar]
- S. V. Johansen, J. D. Bendtsen, M. R.-Jensen, and J. Mogensen, “Broiler weight forecasting using dynamic neural network models with input variable selection,” Comput. Electron. Agric., vol. 159, no. May 2018, pp. 97–109, 2019, doi: 10.1016/j.compag.2018.12.014. [CrossRef] [Google Scholar]
- S. Amraei, S. Abdanan Mehdizadeh, and S. Sallary, “Application of computer vision and support vector regression for weight prediction of live broiler chicken,” Eng. Agric. Environ. Food, vol. 10, no. 4, pp. 266–271, 2017, doi: 10.1016/j.eaef.2017.04.003. [CrossRef] [Google Scholar]
- A. K. Mortensen, P. Lisouski, and P. Ahrendt, “Weight prediction of broiler chickens using 3D computer vision,” Comput. Electron. Agric., vol. 123, pp. 319–326, 2016, doi: 10.1016/j.compag.2016.03.011. [CrossRef] [Google Scholar]
- S. Neethirajan, “ChickTrack – A quantitative tracking tool for measuring chicken activity,” Meas. J. Int. Meas. Confed., vol. 191, no. July 2021, p. 110819, 2022, doi: 10.1016/j.measurement.2022.110819. [CrossRef] [Google Scholar]
- X. Li et al., “Y-BGD: Broiler counting based on multi-object tracking,” Comput. Electron. Agric., vol. 202, no. March, p. 107347, 2022, doi: 10.1016/j.compag.2022.107347. [CrossRef] [Google Scholar]
- C. Fang, J. Huang, K. Cuan, X. Zhuang, and T. Zhang, “Comparative study on poultry target tracking algorithms based on a deep regression network,” Biosyst. Eng., vol. 190, no. 2016, pp. 176–183, 2020, doi: 10.1016/j.biosystemseng.2019.12.002. [CrossRef] [Google Scholar]
- A. Peña Fernández et al., “Real-time monitoring of broiler flock’s welfare status using camera-based technology,” Biosyst. Eng., vol. 173, pp. 103–114, 2018, doi: 10.1016/j.biosystemseng.2018.05.008. [CrossRef] [Google Scholar]
- S. Abdanan Mehdizadeh, D. P. Neves, M. Tscharke, I. A. Nääs, and T. M. Banhazi, “Image analysis method to evaluate beak and head motion of broiler chickens during feeding,” Comput. Electron. Agric., vol. 114, pp. 88–95, 2015, doi: 10.1016/j.compag.2015.03.017. [CrossRef] [Google Scholar]
- V. Bloch, N. Barchilon, I. Halachmi, and S. Druyan, “Automatic broiler temperature measuring by thermal camera,” Biosyst. Eng., vol. 199, pp. 127–134, 2020, doi: 10.1016/j.biosystemseng.2019.08.011. [CrossRef] [Google Scholar]
- B. C. Geronimo et al., “Computer vision system and near-infrared spectroscopy for identification and classification of chicken with wooden breast, and physicochemical and technological characterization,” Infrared Phys. Technol., vol. 96, no. September 2018, pp. 303–310, 2019, doi: 10.1016/j.infrared.2018.11.036. [CrossRef] [Google Scholar]
- P. N. Shen, P. K. Lei, Y. C. Liu, Y. J. Haung, and J. L. Lin, “Development of a temperature measurement system for a broiler flock with thermal imaging,” Eng. Agric. Environ. Food, vol. 9, no. 3, pp. 291–295, 2016, doi: 10.1016/j.eaef.2016.03.001. [CrossRef] [Google Scholar]
- D. Wu, Y. Ying, M. Zhou, J. Pan, and D. Cui, “Improved ResNet-50 deep learning algorithm for identifying chicken gender,” Comput. Electron. Agric., vol. 205, no. January, p. 107622, 2023, doi: 10.1016/j.compag.2023.107622. [CrossRef] [Google Scholar]
- K. Cuan, Z. Li, T. Zhang, and H. Qu, “Gender determination of domestic chicks based on vocalization signals,” Comput. Electron. Agric., vol. 199, no. December 2021, 2022, doi: 10.1016/j.compag.2022.107172. [CrossRef] [Google Scholar]
- X. Yang, R. Bist, S. Subedi, Z. Wu, T. Liu, and L. Chai, “An automatic classifier for monitoring applied behaviors of cage-free laying hens with deep learning,” Eng. Appl. Artif. Intell., vol. 123, no. May, 2023, doi: 10.1016/j.engappai.2023.106377. [Google Scholar]
- S. Subedi, R. Bist, X. Yang, and L. Chai, “Tracking pecking behaviors and damages of cage-free laying hens with machine vision technologies,” Comput. Electron. Agric., vol. 204, no. December 2022, 2023, doi: 10.1016/j.compag.2022.107545. [CrossRef] [Google Scholar]
- L. Xiao, K. Ding, Y. Gao, and X. Rao, “Behavior-induced health condition monitoring of caged chickens using binocular vision,” Comput. Electron. Agric., vol. 156, no. November 2018, pp. 254–262, 2019, doi: 10.1016/j.compag.2018.11.022. [CrossRef] [Google Scholar]
- D. P. Neves, S. A. Mehdizadeh, M. Tscharke, I. de A. Nääs, and T. M. Banhazi, “Detection of flock movement and behaviour of broiler chickens at different feeders using image analysis,” Inf. Process. Agric., vol. 2, no. 3–4, pp. 177–182, 2015, doi: 10.1016/j.inpa.2015.08.002. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.