Open Access
Issue
E3S Web Conf.
Volume 448, 2023
The 8th International Conference on Energy, Environment, Epidemiology and Information System (ICENIS 2023)
Article Number 02034
Number of page(s) 8
Section Information System
DOI https://doi.org/10.1051/e3sconf/202344802034
Published online 17 November 2023
  1. F. Agrusti, G. Bonavolontà, M. Mezzini, University Dropout Prediction Through Educational Data Mining Techniques: A Systematic Review, Journal of e-Learning and Knowledge Society, 15 3 161-182 (2019). [Google Scholar]
  2. E. D. Ryandi, “Di Masa Pandemi, Setengah Juta Lebih Mahasiswa Putus Kuliah. Jawa Pos”. Acces from https://www.jawapos.com/nasional/pendidikan/16/08/2021/di-masa-pandemi-setengah-juta-lebih-mahasiswa-putus-kuliah/ (2021, August 21). [Google Scholar]
  3. C. Mason, J. Twomey, D. Wright, L. Whitman, Predicting Engineering Student Attrition Risk Using a Probabilistic Neural Network and Comparing Results with a Backpropagation Neural Network and Logistic Regression, Res High Educ, 59 382–400 (2018). [CrossRef] [Google Scholar]
  4. J. D. Febro, Utilizing Feature Selection in Identifying Predicting Factors of Student Retention, International Journal of Advanced Computer Science and Applications, 10 9 (2019). [CrossRef] [Google Scholar]
  5. D. Delen, K. Topuz, E. Eryarsoy, Development of a Bayesian Belief Network-based DSS for predicting and understanding freshmen student attrition, European Journal of Operational Research, 281 575–587 (2020). [CrossRef] [Google Scholar]
  6. A. A. Mubarak, H. Cao, W. Zhang, Prediction of students' early dropout based on their interaction logs in online learning environment, Interactive Learning Environments, (2020). [Google Scholar]
  7. D. Uliyan, A. S. Aljaloud, A. Alkhalil, H. A. A. Amer, M. A. Elrhman, A. Mohamed, A. F. M. Alogali, Deep Learning Model to Predict Students Retention Using BLSTM and CRF, IEEE Access, 9 (2021). [Google Scholar]
  8. M. Barramuno, C. M. Narvaez, G. G. Garcıa, Prediction Of Student Attrition Risk Using Machine Learning, Journal of Applied Research in Higher Education, 14 3 974-986 (2022). [CrossRef] [Google Scholar]
  9. X. Tang, H. Zhang, N. Zhang, H. Yan, F. Tang, W. Zhang, Dropout Rate Prediction of Massive Open Online Courses Based on Convolutional Neural Networks and Long Short-Term Memory Network, Mobile Information Systems, 2022 1-11 (2022). [Google Scholar]
  10. G. Latif, R. Alghazo, M. A. E. Pilotti, G. B. Brahim, Identifying “At-Risk" Students: An AI-based Prediction Approach, International Journal of Computing and Digital Systems, 11 1 (2022). [Google Scholar]
  11. M. Naseem, K. Chaudhary, B. Sharma, Predicting Freshmen Attrition in Computing Science using Data Mining, Education and Information Technologies, 27 9587–9617 (2022). [CrossRef] [Google Scholar]
  12. H. Brdesee, W. Alsaggaf, N. Aljohani, S. Hassan, Predictive Model Using a Machine Learning Approach for Enhancing the Retention Rate of Students At-Risk, International Journal on Semantic Web and Information Systems, 18, 1 (2022). [CrossRef] [Google Scholar]
  13. K. Oqaidi, S. Aouhassi, K. Mansouri, Towards a Students' Dropout Prediction Model in Higher Education Institutions Using Machine Learning Algorithms, iJET, 7 18 103-117 (2022). [Google Scholar]
  14. D. K. Dake and C. B. Andoh, Using Machine Learning Techniques to Predict Learner Dropout Rate in Higher Educational Institutions, Mobile Information Systems, 2022 (2022). [Google Scholar]
  15. H. Dasi and S. Kanakala, Student Dropout Prediction Using Machine Learning Techniques, International Journal of Intelligent Systems And Applications In Engineering, 10 4 408-414 (2022). [Google Scholar]
  16. G. Sani, F. O. Oladipo, E. Ogbuju, F. J. Agbo, Development of a Predictive Model of Student Attrition Rate, Journal of Applied Artificial Intelligence, 3 2 1–12 (2022). [CrossRef] [Google Scholar]
  17. S. Trivedi, Improving Students' Retention Using Machine Learning: Impacts and Implications, ScienceOpen Preprints, (2022). [Google Scholar]
  18. M. Cannistrà, C. Masci, F. Ieva, T. Agasisti, A. M. Paganoni, Early-Predicting Dropout Of University Students: An Application Of Innovative Multilevel Machine Learning And Statistical Techniques, Studies in Higher Education, 47 9 (2022). [Google Scholar]
  19. S. M. Arqawi, E. A. Zitawi, A. H. Rabaya, B. S. Abunasser, Predicting University Student Retention using Artificial Intelligence, International Journal of Advanced Computer Science and Applications, 13 9 315-324 (2022). [CrossRef] [Google Scholar]
  20. M. Mardolkar and N. Kumaran, Forecasting and Avoiding Student Dropout Using the K Nearest Neighbor Approach, SN Computer Science, (2020). [Google Scholar]
  21. S. Nuanmeesri, L. Poomhiran, S. Chopvitayakun, P. Kadmateekarun, Improving Dropout Forecasting during the COVID-19 Pandemic through Feature Selection and Multi Layer Perceptron Neural Network, International Journal of Information and Education Technology, 12 9 851-857 (2022). [CrossRef] [Google Scholar]
  22. B. Prenkaj, D. Distante, S. Faralli, P. Velardi, Hidden space deep sequential risk prediction on student Trajectories, Future Generation Computer Systems, 125 532-543 (2021), [CrossRef] [Google Scholar]
  23. M. A. Timbal, Analysis of Student-at-Risk of Dropping out (SARDO) Using Decision Tree: An Intelligent Predictive Model for Reduction, International Journal of Machine Learning and Computing, 9 3 273-278 (2019). [CrossRef] [Google Scholar]
  24. L. Jesson, Matheson, F. M. Lacey, Doing your literature review: Traditional and systematic techniques, (2011). [Google Scholar]
  25. C. Hart. Doing a literature review: releasing the research imagination (2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.