Open Access
Issue |
E3S Web Conf.
Volume 448, 2023
The 8th International Conference on Energy, Environment, Epidemiology and Information System (ICENIS 2023)
|
|
---|---|---|
Article Number | 02054 | |
Number of page(s) | 10 | |
Section | Information System | |
DOI | https://doi.org/10.1051/e3sconf/202344802054 | |
Published online | 17 November 2023 |
- Springer Nature Limited, “Prognosis,” Nature Portfolio, 2023. https://www.nature.com/subjects/prognosis (accessed Jun. 30, 2023). [Google Scholar]
- R. R. Hansebout, S. D. Cornacchi, T. Haines, and C. H. Goldsmith, “How to use an article about prognosis,” Can. J. Surg., vol. 52, no. 4, pp. 328–336, 2009, [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/19680521 [Google Scholar]
- P. L. Santaguida et al., “Patient characteristics affecting the prognosis of total hip and knee joint arthroplasty: a systematic review,” Can. J. Surg., vol. 51, no. 6, pp. 428–436, 2008, [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/19057730 [Google Scholar]
- H. Li et al., “A nomogram model based on the number of examined lymph nodes-related signature to predict prognosis and guide clinical therapy in gastric cancer,” Front. Immunol., vol. 13, p. 947802, 2022, doi: 10.3389/fimmu.2022.947802. [CrossRef] [Google Scholar]
- American Academy of Orthopaedic Surgeons, “About OrthoInfo,” 2023. https://orthoinfo.aaos.org/en/about-orthoinfo/ (accessed Jun. 16, 2023). [Google Scholar]
- Google Cloud, “Artificial intelligence (AI) vs. machine learning (ML),” 2023. https://cloud.google.com/learn/artificial-intelligence-vs-machine-learning (accessed Aug. 12, 2023). [Google Scholar]
- S. P. Lalehzarian, A. K. Gowd, and J. N. Liu, “Machine learning in orthopaedic surgery,” World J Orthop, vol. 12, no. 9, pp. 685–699, 2021, doi: 10.5312/wjo.v12.i9.685. [CrossRef] [PubMed] [Google Scholar]
- T. Hamid, M. Chhabra, K. Ravulakollu, P. Singh, S. Dalal, and R. Dewan, “A Review on Artificial Intelligence in Orthopaedics,” in Proceedings of the 2022 9th International Conference on Computing for Sustainable Global Development, INDIACom 2022, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 365–369. doi: 10.23919/INDIACom54597.2022.9763178. [Google Scholar]
- P. Hernigou, O. Barbier, and P. Chenaie, “Hip arthroplasty dislocation risk calculator: evaluation of one million primary implants and twenty-five thousand dislocations with deep learning artificial intelligence in a systematic review of reviews,” Int Orthop, vol. 47, no. 2, pp. 557–571, 2023, doi: 10.1007/s00264-022-05644-2. [CrossRef] [PubMed] [Google Scholar]
- K. N. Kunze, E. M. Polce, T. D. Alter, and S. J. Nho, “Machine Learning Algorithms Predict Prolonged Opioid Use in Opioid-Naïve Primary Hip Arthroscopy Patients,” J Am Acad Orthop Surg Glob Res Rev, vol. 5, no. 5, p. E21000938, 2021, doi: 10.5435/JAAOSGlobal-D-21-00093. [Google Scholar]
- B. Gurung et al., “Artificial intelligence for image analysis in total hip and total knee arthroplasty : a scoping review.,” Bone Joint J, vol. 104, no. 8, pp. 929–937, 2022, doi: 10.1302/0301-620X.104B8.BJJ-2022-0120.R2. [CrossRef] [PubMed] [Google Scholar]
- P. Gupta, H. S. Haeberle, Z. R. Zimmer, W. N. Levine, R. J. Williams, and P. N. Ramkumar, “Artificial intelligence-based applications in shoulder surgery leaves much to be desired: a systematic review,” JSES Reviews, Reports, and Techniques, 2023, doi: https://doi.org/10.1016/j.xrrt.2022.12.006. [Google Scholar]
- N. Vij, C. Leber, and K. Schmidt, “Current applications of gait analysis after total knee arthroplasty: A scoping review,” J Clin Orthop Trauma, vol. 33, p. 102014, 2022, doi: https://doi.org/10.1016/j.jcot.2022.102014. [CrossRef] [PubMed] [Google Scholar]
- M. Varacallo, T. D. Luo, and N. A. Johanson, “Total Hip Arthroplasty Techniques,” StatPearls, 2022. https://www.statpearls.com/articlelibrary/viewarticle/22894/ (accessed Jun. 30, 2023). [Google Scholar]
- J. L. Berliner, D. J. Brodke, V. Chan, N. F. SooHoo, and K. J. Bozic, “John Charnley Award: Preoperative Patient-reported Outcome Measures Predict Clinically Meaningful Improvement in Function After THA,” Clin Orthop Relat Res, vol. 474, no. 2, 2016, [Online]. Available: https://journals.lww.com/clinorthop/Fulltext/2016/02000/John_Charnley_Award__Preoperative_Patient_reported.10.aspx [Google Scholar]
- J. Mcneely, “CMS Comprehensive Care for Joint Replacement Model: Performance Year 5 Evaluation Report Fifth Annual Report HEALTH CARE AND HUMAN SERVICES POLICY, RESEARCH, AND ANALYTICS-WITH REAL-WORLD PERSPECTIVE. CMS Comprehensive Care for Joint Replacement (CJR) Model: Performance Year 5 Evaluation Report Fifth Annual Report CJR Evaluation-TOC,” Apr. 2023. Accessed: Jul. 01, 2023. [Online]. Available: https://innovation.cms.gov/data-and-reports/2023/cjr-py5-annual-report [Google Scholar]
- J. Sniderman, R. B. Stark, C. E. Schwartz, H. Imam, J. A. Finkelstein, and M. T. Nousiainen, “Patient Factors That Matter in Predicting Hip Arthroplasty Outcomes: A Machine-Learning Approach,” Journal of Arthroplasty, vol. 36, no. 6, pp. 2024–2032, Jun. 2021, doi: 10.1016/j.arth.2020.12.038. [CrossRef] [Google Scholar]
- G. Elwyn et al., “Shared Decision Making: A Model for Clinical Practice,” J Gen Intern Med, vol. 27, no. 10, pp. 1361–1367, 2012, doi: 10.1007/s11606-012-2077-6. [CrossRef] [PubMed] [Google Scholar]
- M. Loppini, F. M. Gambaro, K. Chiappetta, G. Grappiolo, A. M. Bianchi, and V. D. A. Corino, “Automatic Identification of Failure in Hip Replacement: An Artificial Intelligence Approach,” Bioengineering, vol. 9, no. 7, Jul. 2022, doi: 10.3390/bioengineering9070288. [CrossRef] [Google Scholar]
- J. F. Oeding et al., “Understanding Risk for Early Dislocation Resulting in Reoperation Within 90 Days of Reverse Total Shoulder Arthroplasty: Extreme Rare Event Detection Through Cost Sensitive Machine Learning,” J Shoulder Elbow Surg, Mar. 2023, doi: 10.1016/j.jse.2023.03.001. [Google Scholar]
- V. Kumar et al., “Using machine learning to predict clinical outcomes after shoulder arthroplasty with a minimal feature set,” J Shoulder Elbow Surg, vol. 30, no. 5, pp. e225–e236, May 2021, doi: 10.1016/j.jse.2020.07.042. [CrossRef] [PubMed] [Google Scholar]
- H. Farooq, E. R. Deckard, M. Ziemba-Davis, A. Madsen, and R. M. Meneghini, “Predictors of Patient Satisfaction Following Primary Total Knee Arthroplasty: Results from a Traditional Statistical Model and a Machine Learning Algorithm,” Journal of Arthroplasty, vol. 35, no. 11, pp. 3123–3130, Nov. 2020, doi: 10.1016/j.arth.2020.05.077. [CrossRef] [Google Scholar]
- N. J. van Eck and L. Waltman, “Visualizing Bibliometric Networks,” in Measuring Scholarly Impact: Methods and Practice, Y. Ding, R. Rousseau, and D. Wolfram, Eds., Cham: Springer International Publishing, 2014, pp. 285–320. doi: 10.1007/978-3-319-10377-8_13. [CrossRef] [Google Scholar]
- J. Shi, K. Duan, G. Wu, R. Zhang, and X. Feng, “Comprehensive metrological and content analysis of the public–private partnerships (PPPs) research field: a new bibliometric journey,” Scientometrics, vol. 124, no. 3, pp. 2145–2184, 2020, doi: 10.1007/s11192-020-03607-1. [CrossRef] [Google Scholar]
- X. Pan, E. Yan, M. Cui, and W. Hua, “Examining the usage, citation, and diffusion patterns of bibliometric mapping software: A comparative study of three tools,” J Informetr, vol. 12, no. 2, pp. 481–493, May 2018, doi: 10.1016/j.joi.2018.03.005. [CrossRef] [Google Scholar]
- N. Jan van Eck and L. Waltman, “VOSviewer Manual,” Jan. 2023. Accessed: Jul. 01, 2023. [Online]. Available: https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.19.pdf [Google Scholar]
- M. A. Fontana, S. Lyman, G. K. Sarker, D. E. Padgett, and C. H. MacLean, “Can machine learning algorithms predict which patients will achieve minimally clinically important differences from total joint arthroplasty?,” Clin Orthop Relat Res, vol. 477, no. 6, pp. 1267–1279, 2019, doi: 10.1097/CORR.0000000000000687. [CrossRef] [PubMed] [Google Scholar]
- F. H. Nham, T. Court, A. K. Zalikha, M. M. El-Othmani, and R. P. Shah, “Assessing the predictive capacity of machine learning models using patient-specific variables in determining in-hospital outcomes after THA,” J Orthop, vol. 41, pp. 39–46, 2023, doi: 10.1016/j.jor.2023.05.012. [CrossRef] [PubMed] [Google Scholar]
- Y. Yu, H. Nembhard, A. Sillner, and N. Fareed, “Monitoring total hip arthroplasty outcomes with a comparison of risk-adjustment frameworks,” H. B. Nembhard, K. Coperich, and E. Cudney, Eds., Institute of Industrial Engineers, 2017, pp. 555–560. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030986742&partnerID=40&md5=3908aee64bd3711b559e6145b3ad9894 [Google Scholar]
- J. Sniderman, R. B. Stark, C. E. Schwartz, H. Imam, J. A. Finkelstein, and M. T. Nousiainen, “Patient Factors That Matter in Predicting Hip Arthroplasty Outcomes: A Machine-Learning Approach,” Journal of Arthroplasty, vol. 36, no. 6, pp. 2024–2032, 2021, doi: 10.1016/j.arth.2020.12.038. [CrossRef] [Google Scholar]
- C. Klemt et al., “The Utility of Machine Learning Algorithms for the Prediction of Early Revision Surgery After Primary Total Hip Arthroplasty.,” J Am Acad Orthop Surg, vol. 30, no. 11, pp. 513–522, 2022, doi: 10.5435/JAAOS-D-21-01039. [CrossRef] [PubMed] [Google Scholar]
- K. N. Kunze, A. V. Karhade, A. J. Sadauskas, J. H. Schwab, and B. R. Levine, “Development of Machine Learning Algorithms to Predict Clinically Meaningful Improvement for the Patient-Reported Health State After Total Hip Arthroplasty,” Journal of Arthroplasty, vol. 35, no. 8, pp. 2119–2123, Aug. 2020, doi: 10.1016/j.arth.2020.03.019. [CrossRef] [Google Scholar]
- I. Lazic et al., “Prediction of Complications and Surgery Duration in Primary Total Hip Arthroplasty Using Machine Learning: The Necessity of Modified Algorithms and Specific Data,” J Clin Med, vol. 11, no. 8, 2022, doi: 10.3390/jcm11082147. [CrossRef] [PubMed] [Google Scholar]
- O. Pakarinen, M. Karsikas, A. Reito, O. Lainiala, P. Neuvonen, and A. Eskelinen, “Prediction model for an early revision for dislocation after primary total hip arthroplasty,” PLoS One, vol. 17, no. 9 September, 2022, doi: 10.1371/journal.pone.0274384. [Google Scholar]
- J. Amann, A. Blasimme, E. Vayena, D. Frey, V. I. Madai, and the P. consortium, “Explainability for artificial intelligence in healthcare: a multidisciplinary perspective,” BMC Med Inform Decis Mak, vol. 20, no. 1, p. 310, 2020, doi: 10.1186/s12911-020-01332-6. [CrossRef] [PubMed] [Google Scholar]
- A. Chaddad, J. Peng, J. Xu, and A. Bouridane, “Survey of Explainable AI Techniques in Healthcare,” Sensors, vol. 23, no. 2. MDPI, Jan. 01, 2023. doi: 10.3390/s23020634. [Google Scholar]
- A. M. Alaa and M. van der Schaar, “AutoPrognosis: Automated Clinical Prognostic Modeling via Bayesian Optimization with Structured Kernel Learning,” in Proceedings of the 35th International Conference on Machine Learning, J. Dy and A. Krause, Eds., Stockholm, Sweden, Jul. 2018, pp. 139–148. [Google Scholar]
- A. A. Shah, S. K. Devana, C. Lee, R. Kianian, M. van der Schaar, and N. F. SooHoo, “Development of a Novel, Potentially Universal Machine Learning Algorithm for Prediction of Complications After Total Hip Arthroplasty,” Journal of Arthroplasty, vol. 36, no. 5, pp. 1655-1662.e1, 2021, doi: 10.1016/j.arth.2020.12.040. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.