Open Access
Issue |
E3S Web Conf.
Volume 449, 2023
International Scientific and Practical Conference “Priority Directions of Complex Socio-Economic Development of the Region” (PDSED 2023)
|
|
---|---|---|
Article Number | 07018 | |
Number of page(s) | 11 | |
Section | Innovative, Scientific and Educational Subsystems in the Socio-economic Development of the Region | |
DOI | https://doi.org/10.1051/e3sconf/202344907018 | |
Published online | 16 November 2023 |
- L. E. Lwakatare, A. Raj, J. Bosch, H. H. Olsson, I. Crnkovic. A taxonomy of software engineering challenges for machine learning systems: An empirical investigation, in P. Kruchten, S. Fraser, F. Coallier (Eds.), Agile processes in software engineering and extreme programming. XP 2019. Lecture notes in business information processing, Vol. 355, Springer, Cham, 227–243 (2019). doi: 10.1007/978-3-030-19034-714 [Google Scholar]
- M. Shehab, L. Abualigah, M. I. Jarrah, O. A. Alomari, M. S. Daoud MS. Artificial intelligence in software engineering and inverse. International Journal of Computer Integrated Manufacturing, 33(10-11), 1129–1144 (2020). doi: 10.1080/0951192X.2020.1780320 [CrossRef] [Google Scholar]
- V. H. Durelli, R. S. Durelli, S. S. Borges, A. T. Endo, M. M. Eler, D. R. Dias, M. P. Guimaraes. Machine learning applied to software testing: A systematic mapping study. IEEE Transactions on Reliability, 68(3), 1189–1212 (2019). doi: 10.1109/TR.2019.2892517 [CrossRef] [Google Scholar]
- F. Khomh, B. Adams, J. Cheng, M. Fokaefs, G. Antoniol. Software engineering for machine-learning applications: The road ahead. IEEE Software, 35(5), 81–84 (2018). doi: 10.1109/MS.2018.3571224 [CrossRef] [Google Scholar]
- N. Maneerat, P. Muenchaisri. Bad-smell prediction from software design model using machine learning techniques, in 2011 Eighth international joint conference on computer science and software engineering (JCSSE), 11-13 May 2011, Nakhonpathom, Thailand, 331–336 (2011). doi: 10.1109/JCSSE.2011.5930143 [Google Scholar]
- P. Talele, R. Phalnikar. Software requirements classification and prioritisation using machine learning, in A. Joshi, M. Khosravy, N. Gupta (Eds.), Machine learning for predictive analysis. Lecture notes in networks and systems, Vol. 141, Springer, Singapore, 257–267 (2021). doi: 10.1007/978-981-15-7106-026 [CrossRef] [Google Scholar]
- J. Zou, L. Xu, W. Guo, M. Yan, D. Yang, X. Zhang. Which non-functional requirements do developers focuson? An empirical study on stack overflow using topic analysis, in 2015 IEEE/ACM 12th working conference on mining software repositories, 16-17 May 2015, Florence, Italy, 446–449 (2015). doi: 10.1109/MSR.2015.60 [Google Scholar]
- A. Ahmad, K. Li, C. Feng, T. Sun. An empirical study on how iOS developers report quality Aspects on stack overflow. International Journal of Machine Learning and Computing, 8(5), 501–506 (2018). [Google Scholar]
- C. Treude, O. Barzilay, M. A. Storey. How do programmers ask and answer questions on the web? Nier track, in 2011 33rd International conference on software engineering (ICSE), 21-28 May 2011, Waikiki, Honolulu, HI, USA, 804–807 (2011). doi: 10.1145/1985793.1985907 [Google Scholar]
- J. Zou, L. Xu, M. Yang, X. Zhang, D. Yang. Towards comprehending the non-functional requirements through developers’ eyes: An exploration of stack overflow using topic analysis. Information and Software Technology, 84, 19–32 (2017). doi: 10.1016/j.infsof.2016.12.003 [CrossRef] [Google Scholar]
- A. Ahmad, C. Feng, K. Li, S. M. Asim, T. Sun. Toward empirically investigating nonfunctional requirements of iOS developers on stack overflow. IEEE Access, 7, 61145–61169 (2019). doi: 10.1109/ACCESS.2019.2914429 [CrossRef] [Google Scholar]
- H. Yin, D. Pfahl. A preliminary study on the suitability of stack overflow for open innovation in requirements engineering, in Proceedings of the 3rd international conference on communication and information processing, 24-26 November 2017, Tokyo, Japan, 45–49 (2017). doi: 10.1145/3162957.3162965 [Google Scholar]
- K. Bajaj, K. Pattabiraman, A. Mesbah. Mining questions asked by web developers, in Proceedings of the 11th working conference on mining software repositories, 31 May – 01 June 2014, Hyderabad, India, 112–121 (2014). doi: 10.1145/2597073.2597083 [Google Scholar]
- G. Pinto, F. Castor, Y. D. Liu. Mining questions about software energy consumption, in Proceedings of the 11th working conference on mining software repositories, 31 May – 01 June 2014, Hyderabad, India, 22–31 (2014). doi: 10.1145/2597073.2597110 [Google Scholar]
- M. Xiao, G. Yin, T. Wang, C. Yang, M. Chen. Requirement acquisition from social Q&A sites, in L. Liu, M. Aoyama (Eds.), Requirements engineering in the big data era. Communications in computer and information science, Vol. 558, Springer, Berlin, Heidelberg, 64–74 (2015). doi: 10.1007/978-3-662-48634-4_5 [CrossRef] [Google Scholar]
- C. Rosen, E. Shihab. What are mobile developers asking about? A large-scale study using stack overflow. Empirical Software Engineering, 21(3), 1192–1223 (2016). doi: 10.1007/s10664-015-9379-3 [CrossRef] [Google Scholar]
- Z. S. H. Abad, A. Shymka, S. Pant, A. Currie, G. Ruhe. What are practitioners asking about requirements engineering? An exploratory analysis of social q&a sites, in 2016 IEEE 24th international requirements engineering conference workshops (REW), 12-16 September 2016, Beijing, China, 334–343 (2016). doi: 10.1109/REW.2016.061 [CrossRef] [Google Scholar]
- G. H. Pinto, F. Kamei. What do programmers say about refactoring tools? An empirical investigation of stack overflow, in Proceedings of the 2013 ACM workshop on refactoring tools, 27 October 2013, Indianapolis, Indiana, USA, 33–36 (2013). doi: 10.1145/2541348.2541357 [Google Scholar]
- A. G. Jivani. A comparative study of stemming algorithms. International Journal of Computer Applications in Technology, 2(6), 1930–1938 (2011). [Google Scholar]
- A. Khan, B. Baharudin, L. H. Lee, K. Khan. A review of machine learning algorithms for text-documents classification. Journal of Advances in Information Technology, 1(1), 4–20 (2010). doi: 10.4304/jait.1.1.4-20 [CrossRef] [Google Scholar]
- E. Fernandes, J. Oliveira, G. Vale, T. Paiva, E. Figueiredo. A review-based comparative study of bad smell detection tools, in Proceedings of the 20th international conference on evaluation and assessment in software engineering, 01-03 June 2016, Limerick, Ireland, 1–12 (2016). doi: 10.1145/2915970.2915984 [Google Scholar]
- R. Ferenc, A. Beszedes, L. Fulop, J. Lele. Design pattern mining enhanced by machine learning, in 21st IEEE international conference on software maintenance (ICSM'05), 26-29 September 2005, Budapest, Hungary, 295–304 (2005). doi: 10.1109/ICSM.2005.40 [Google Scholar]
- M. Zanoni, F. A. Fontana, F. Stella. On applying machine learning techniques for design pattern detection. Journal of Systems and Software, 103, 102–117 (2015). doi: 10.1016/j.jss.2015.01.037 [CrossRef] [Google Scholar]
- R. Selvarani, P. Mangayarkarasi. A dynamic optimization technique for redesigning OO software for reusability. ACM SIGSOFT Software Engineering Notes, 40(2), 1–6 (2015). doi: 10.1145/2735399.2735415 [CrossRef] [Google Scholar]
- R. Agashe, S. Iyer, L. Zettlemoyer. Juice: A large scale distantly supervised dataset for open domain context-based code generation (2019). doi: 10.48550/arXiv.1910.02216 [Google Scholar]
- E. C. Shin, M. Allamanis, M. Brockschmidt, A. Polozov. Program synthesis and semantic parsing with learned code idioms, in 33rd Conference on neural information processing systems (NeurIPS 2019), Vancouver, Canada (2019). [Google Scholar]
- A. Takahashi, H. Shiina, N. Kobayashi. Automatic generation of program comments based on problem statements for computational thinking, in 2019 8th International congress on advanced applied informatics (IIAI-AAI), 07-11 July 2019, Toyama, Japan, 629–634 (2019). doi: 10.1109/IIAI-AAI.2019.00132 [Google Scholar]
- Y. Shido, Y. Kobayashi, A. Yamamoto, A. Miyamoto, T. Matsumura. Automatic source code summarization with extended tree-lstm, in 2019 International joint conference on neural networks (IJCNN), 14-19 July 2019, Budapest, Hungary, 1–8 (2019). doi: 10.1109/IJCNN.2019.8851751 [Google Scholar]
- M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White, D. Poshyvanyk. An empirical study on learning bug-fixing patches in the wild via neural machine translation. ACM Transactions on Software Engineering and Methodology, 28(4), 1–29 (2019). doi: 10.1145/3340544 [CrossRef] [Google Scholar]
- Z. Zhu, Z. Xue, Z. Yuan. Automatic graphics program generation using attention-based hierarchical decoder, in C. Jawahar, H. Li, G. Mori, K. Schindler (Eds.), Computer vision – ACCV 2018. ACCV 2018. Lecture notes in computer science, Vol. 11366, Springer, Cham, 181–196 (2019). doi: 10.1007/978-3-030-20876-9_12 [Google Scholar]
- Y. Kim, H. Kim. Translating CUDA to opencl for hardware generation using neural machine translation, in 2019 IEEE/ACM international symposium on code generation and optimization (CGO), 16-20 February 2019, Washington, DC, USA, 285–286 (2019). doi: 10.1109/CGO.2019.8661172 [Google Scholar]
- R. Gozalo-Brizuela, E. C. Garrido-Merchan. ChatGPT is not all you need. A State of the Art Review of large Generative AI models (2023). doi: 10.48550/arXiv.2301.04655 [Google Scholar]
- M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish, I. Sutskever, W. Zaremba. Evaluating large language models trained on code (2021). doi: 10.48550/arXiv.2107.03374 [Google Scholar]
- Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond, T. Eccles, J. Keeling, F. Gimeno, A. Dal Lago, T. Hubert, P. Choy*, C. de M. d’Autume, I. Babuschkin, X. Chen, P.-S. Huang, J. Welbl, S. Gowal, A. Cherepanov, J. Molloy, D. J. Mankowitz, E. S. Robson, P. Kohli, N. de Freitas, K. Kavukcuoglu, O. Vinyals. Competition-level code generation with alphacode. Science, 378(6624), 1092–1097 (2022). [CrossRef] [PubMed] [Google Scholar]
- B. Bhavya, J. Xiong, C. Zhai. Analogy generation by prompting large language models: A case study of instructGPT (2022). doi: 10.48550/arXiv.2210.04186 [Google Scholar]
- E. Dehaerne, B. Dey, S. Halder, S. De Gendt, W. Meert. Code generation using machine learning: A systematic review. IEEE Access, 10, 82434–82455 (2022). doi: 10.1109/ACCESS.2022.3196347 [CrossRef] [Google Scholar]
- H. Alaqail, S. Ahmed. Overview of software testing standard ISO/IEC/IEEE 29119. International Journal of Computer Science and Network Securit, 18(2), 112–116 (2018). [Google Scholar]
- N. Baskiotis, M. Sebag, M. C. Gaudel, S. D. Gouraud. A machine learning approach for statistical software testing, in IJCAI 2007, Proceedings of the 20th International joint conference on artificial intelligence, 6-12 January 2007, Hyderabad, India, 2274–2279 (2007). [Google Scholar]
- M. H. Moghadam, M. Saadatmand, M. Borg, M. Bohlin, B. Lisper. Machine learning to guide performance testing: An autonomous test framework, in 2019 IEEE international conference on software testing, verification and validation workshops (ICSTW), 22-23 April 2019, Xi'an, China, 164–167 (2019). doi: 10.1109/ICSTW.2019.00046 [Google Scholar]
- C. E. Tuncali, G. Fainekos, H. Ito, J. Kapinski. Simulation-based adversarial test generation for autonomous vehicles with machine learning components, in 2018 IEEE intelligent vehicles symposium (IV), 26-30 June 2018, Changshu, China, 1555–1562 (2018). doi: 10.1109/IVS.2018.8500421 [Google Scholar]
- D. S. Battina. Artificial intelligence in software test automation: A systematic literature review. International Journal of Emerging Technologies and Innovative Research, 6(12), 1329–1332. [Google Scholar]
- C. Rankin. The software testing automation framework. IBM Systems Journal, 41(1), 126–139 (2002). doi: 10.1147/sj.411.0126 [CrossRef] [Google Scholar]
- L. C. Briand, Y. Labiche, Z. Bawar. Using machine learning to refine black-box test specifications and test suites, in 2008 The eighth international conference on quality software, 12-13 August 2008, Oxford, UK, 135–144 (2008). doi: 10.1109/QSIC.2008.5 [CrossRef] [Google Scholar]
- IEEE Standard for Software Maintenance, in IEEE Std 1219-1993, The Institute of Electrical and Electronics Engineers, Inc., New York, 1–45 (1993). doi: 10.1109/IEEESTD.1993.115570 [Google Scholar]
- S. Levin, A. Yehudai. Towards software analytics: Modeling maintenance activities (2019). https://doi.org/10.48550/arXiv.1903.04909 [Google Scholar]
- A. Kukkar, R. Mohana, Y. Kumar, A. Nayyar, M. Bilal, K. S. Kwak. Duplicate bug report detection and classification system based on deep learning technique. IEEE Access, 8, 200749–200763 (2020). doi: 10.1109/ACCESS.2020.3033045 [CrossRef] [Google Scholar]
- S. D. Immaculate, M. F. Begam, M. Floramary. Software bug prediction using supervised machine learning algorithms, in 2019 International conference on data science and communication (IconDSC), 01-02 March 2019, Bangalore, India, 1–7 (2019). doi: 10.1109/IconDSC.2019.8816965 [Google Scholar]
- B. K. Sidhu, K. Singh, N. Sharma. A machine learning approach to software model refactoring. International Journal of Computers and Applications, 44(2), 166–177 (2022). doi: 10.1080/1206212X.2020.1711616 [CrossRef] [Google Scholar]
- E. Akhmetshin, E. Klochko, I. Andryushchenko. A novel machine learning algorithms to assist traders and investors on forecasting stock market launches. Lecture Notes in Networks and Systems, 758, 354–362. [Google Scholar]
- I. S. Abdullaev, N. A. Prodanova, K. A. Bhaskar, E. L. Lydia, S. Kadry, J. Kim. Task offloading and resource allocation in iot based mobile edge computing using deep learning. Computers, Materials & Continua, 76(2), 1463–1477(2023). doi: 10.32604/cmc.2023.038417 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.