Open Access
Issue |
E3S Web of Conf.
Volume 452, 2023
XV International Online Conference “Improving Farming Productivity and Agroecology – Ecosystem Restoration” (IPFA 2023)
|
|
---|---|---|
Article Number | 01030 | |
Number of page(s) | 9 | |
Section | Precision Agriculture and Agroecology | |
DOI | https://doi.org/10.1051/e3sconf/202345201030 | |
Published online | 30 November 2023 |
- A. D. Alonso, M. A. O'Neill Climate change from the perspective of Spanish wine growers: a three‐region study. British Food Journal (2011) [Google Scholar]
- J. Aurand, OIV statistical report on world vitiviniculture. International Organization of Vine and Wine: Paris, France (2017) [Google Scholar]
- E. Bahar, A. S. Yaasin, The yield and berry quality under different soil tillage and clusters thinning treatments in grape (Vitisvinifera L.) cv. Cabernet-Sauvignon. African journal of agricultural research, 5(21), 2986-2993 (2010) [Google Scholar]
- A. Bock, T. Sparks, N. Estrella, A. Menzel, Changes in the phenology and composition of wine from Franconia, Germany. Climate Research, 50(1), 69-81 (2011) [CrossRef] [Google Scholar]
- B. Bois, S. Zito, A. Calonnec, Climate vs grapevine pests and diseases worldwide: the first results of a global survey. OENO one, 51(2-3), 133-139 (2017) [CrossRef] [Google Scholar]
- A. Bonfante, S. M. Alfieri, R. Albrizio, A. Basile, R. De Mascellis, A. Gambuti, Evaluation of the effects of future climate change on grape quality through a physically-based model application: a case study for the Aglianico grapevine in Campania region, Italy. Agricultural Systems, 152, 100-109 (2017) [CrossRef] [Google Scholar]
- M. Brandt, M. Scheidweiler, D. Rauhut, C. D. Patz, F. Will, H. Zorn, M. Stoll, The influence of temperature and solar radiation on phenols in berry skin and maturity parameters of Vitisvinifera L. cv. Riesling: This article is published in cooperation with the 21th GIESCO International Meeting, June 23-28 2019, Thessaloniki, Greece. Guests editors: StefanosKoundouras and Laurent Torregrosa. Oeno One, 53(2) (2019) [CrossRef] [Google Scholar]
- D. H. Chitwood, S. M. Rundell, D. Y. Li, Climate and developmental plasticity: interannual variability in grapevine leaf morphology. Plant physiology, 170(3), 1480-1491 (2016) [CrossRef] [PubMed] [Google Scholar]
- R. Costa, H. Fraga, A. C. Malheiro, J. A. Santos, Application of crop modelling to portuguese viticulture: Implementation and added-values for strategic planning. Ciência e TécnicaVitivinícola, 30(1), 29-42 (2015) [Google Scholar]
- I. Chuine, P. Yiou, N. Viovy, B. Seguin, V. Daux, E. L. R. Ladurie, Grape ripening as a past climate indicator. Nature, 432(7015), 289-290 (2004) [CrossRef] [PubMed] [Google Scholar]
- C. V. Dagatti, B. Marcucci, M. E. Herrera, V. C. Becerra, Primeradetección de Drosophila suzukii (Diptera: Drosophilidae) enfrutos de zarzamoraen Mendoza, Argentina, First record of Drosophila suzukii (Diptera: Drosophilidae) associated to blackberry in Mendoza, Argentina. SociedadEntomológica Argentina (2018) [Google Scholar]
- E. Duchêne, F. Huard, V. Dumas, C. Schneider, D. Merdinoglu, The challenge of adapting grapevine varieties to climate change. Climate research, 41(3), 193-204 (2010) [CrossRef] [Google Scholar]
- F. Ewert, D. Rodriguez, P. Jamieson, M. A. Semenov, Effects of elevated CO2 and drought on wheat: testing crop simulation models for different experimental and climatic conditions. Agriculture, Ecosystems & Environment, 93(1-3), 249-266 (2002) [CrossRef] [Google Scholar]
- J. Flexas, J. Galmés, A. Gallé, J. Gulías, Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement. Australian Journal of Grape and Wine Research, 16, 106-121 (2010) [CrossRef] [Google Scholar]
- H. Fraga, R. Costa, J. Moutinho-Pereira, C. M. Correia, Modeling phenology, water status, and yield components of three Portuguese grapevines using the STICS crop model. American Journal of Enology and Viticulture, 66(4), 482-491 (2015) [CrossRef] [Google Scholar]
- M. Gaál, M. Moriondo, M. Bindi, Modelling the impact of climate change on the Hungarian wine regions using random forest. Appl. Ecol. Environ. Res, 10(2), 121-140 (2012) [CrossRef] [Google Scholar]
- D. H. Greer, M. M. Weedon, C. Weston, Reductions in biomass accumulation, photosynthesis in situ and net carbon balance are the costs of protecting Vitisvinifera ‘Semillon’grapevines from heat stress with shade covering. AoB plants (2011) [Google Scholar]
- K. Goergen, J. Beersma, L. Hoffmann, J. Junk, ENSEMBLES-based assessment of regional climate effects in Luxembourg and their impact on vegetation. Climatic change, 119(3), 761-773 (2013) [CrossRef] [Google Scholar]
- L. Hannah, P. R. Roehrdanz, M. Ikegami, A. V. Shepard, M. R. Shaw, Climate change, wine, and conservation. Proceedings of the National Academy of Sciences, 110(17), 6907-6912 (2013) [CrossRef] [Google Scholar]
- G. Lazoglou, C. Anagnostopoulou, S. Koundouras, Climate change projections for Greek viticulture as simulated by a regional climate model. Theoretical and Applied Climatology, 133(1), 551-567 (2018) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.