Open Access
Issue |
E3S Web of Conf.
Volume 452, 2023
XV International Online Conference “Improving Farming Productivity and Agroecology – Ecosystem Restoration” (IPFA 2023)
|
|
---|---|---|
Article Number | 01037 | |
Number of page(s) | 8 | |
Section | Precision Agriculture and Agroecology | |
DOI | https://doi.org/10.1051/e3sconf/202345201037 | |
Published online | 30 November 2023 |
- G. Agati, L. Foschi, N. Grossi, L. Guglielminetti, Z. G. Cerovic, M. Volterrani, Fluorescence-based versus reflectance proximal sensing of nitrogen content in Paspalum vaginatum and Zoysia matrella turfgrasses. European Journal of Agronomy, 45, 39–51 (2013). [CrossRef] [Google Scholar]
- M. Ammoniaci, S.-P. Kartsiotis, R. Perria, P. Storchi, State of the art of monitoring technologies and data processing for precision viticulture. Agriculture, 11(3), 201 (2021) [CrossRef] [Google Scholar]
- A. Aquino, B. Millan, M.-P. Diago, J. Tardaguila, Automated early yield prediction in vineyards from on-the-go image acquisition. Computers and Electronics in Agriculture, 144, 26–36 (2018) [CrossRef] [Google Scholar]
- P. Barré, K. Herzog, R. Höfle, M. B. Hullin, R. Töpfer, V. Steinhage, Automated phenotyping of epicuticular waxes of grapevine berries using light separation and convolutional neural networks. Computers and Electronics in Agriculture, 156, 263–274 (2019) [CrossRef] [Google Scholar]
- N. Bendel, A. Backhaus, A. Kicherer, J. Köckerling, M. Maixner, Detection of two different grapevine yellows in Vitis vinifera using hyperspectral imaging. Remote Sensing, 12(24), 4151 (2020) [CrossRef] [Google Scholar]
- J. Blasco, N. Aleixos, E. Moltó, Machine vision system for automatic quality grading of fruit. Biosystems Engineering, 85(4), 415–423 (2003) [CrossRef] [Google Scholar]
- R. G. V. Bramley, J. Ouzman, M. C. T. Trought, Making sense of a sense of place: precision viticulture approaches to the analysis of terroir at different scales: This article is published in cooperation with the XIIIth International Terroir Congress November 17-18 2020, Adelaide, Australia. Guest editors: Cassandra Collins and Roberta De Bei. Oeno One, 54(4), 903–917 (2020) [Google Scholar]
- Y. Cai, K. Guan, D. Lobell, A. B. Potgieter, Integrating satellite and climate data to predict wheat yield in Australia using machine learning approaches. Agricultural and Forest Meteorology, 274, 144–159 (2019) [CrossRef] [Google Scholar]
- P. Chen, Q. Xiao, J. Zhang, C. Xie, B. Wang, Occurrence prediction of cotton pests and diseases by bidirectional long short-term memory networks with climate and atmosphere circulation. Computers and Electronics in Agriculture, 176, 105612 (2020) [CrossRef] [Google Scholar]
- S. Cubero, N. Aleixos, E. Moltó, J. Gómez-Sanchis, J. Blasco, Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food and Bioprocess Technology, 4(4), 487–504 (2011) [CrossRef] [Google Scholar]
- M. P. Diago, C. Rey‐Carames, M. Le Moigne, E. M. Fadaili, J. Tardáguila, Z. Cerovic, Calibration of non‐invasive fluorescence‐based sensors for the manual and on‐the‐go assessment of grapevine vegetative status in the field. Australian Journal of Grape and Wine Research, 22(3), 438–449 (2016) [CrossRef] [Google Scholar]
- S. Fountas, B. Espejo-García, A. Kasimati, N. Mylonas, N. Darra, The future of digital agriculture: technologies and opportunities. IT Professional, 22(1), 24–28 (2020) [CrossRef] [Google Scholar]
- S. Fountas, N. Mylonas, I. Malounas, E. Rodias, C. Hellmann Santos, E. Pekkeriet, Agricultural robotics for field operations. Sensors, 20(9), 2672 (2020) [CrossRef] [PubMed] [Google Scholar]
- S. Fuentes, E. Hernández-Montes, J. M. Escalona, J. Bota, C. G. Viejo, Automated grapevine cultivar classification based on machine learning using leaf morpho-colorimetry, fractal dimension and near-infrared spectroscopy parameters. Computers and Electronics in Agriculture, 151, 311–318 (2018) [CrossRef] [Google Scholar]
- R. Giovos, D. Tassopoulos, D. Kalivas, N. Lougkos, A. Priovolou, Remote sensing vegetation indices in viticulture: A critical review. Agriculture, 11(5), 457 (2021) [CrossRef] [Google Scholar]
- H. Grahn, P. Geladi, Techniques and applications of hyperspectral image analysis. John Wiley & Sons (2007) [CrossRef] [Google Scholar]
- J. Grimm, K. Herzog, F. Rist, A. Kicherer, R. Toepfer, V. Steinhage, An adaptable approach to automated visual detection of plant organs with applications in grapevine breeding. Biosystems Engineering, 183, 170–183 (2019) [CrossRef] [Google Scholar]
- S. Gutiérrez, M. P. Diago, J. Fernández-Novales, J. Tardaguila, Vineyard water status assessment using on-the-go thermal imaging and machine learning. PLoS One, 13(2), e0192037 (2018) [CrossRef] [PubMed] [Google Scholar]
- S. Gutiérrez, J. Tardáguila, J. Fernández‐Novales, M. P. Diago, On‐the‐go hyperspectral imaging for the in‐field estimation of grape berry soluble solids and anthocyanin concentration. Australian Journal of Grape and Wine Research, 25(1), 127–133 (2019) [CrossRef] [Google Scholar]
- A. Hall, D. W. Lamb, B. P. Holzapfel, J. P. Louis, Within-season temporal variation in correlations between vineyard canopy and winegrape composition and yield. Precision Agriculture, 12(1), 103–117 (2011) [CrossRef] [Google Scholar]
- T.-H. Hsieh, J.-F. Kiang, Comparison of CNN algorithms on hyperspectral image classification in agricultural lands. Sensors, 20(6), 1734 (2020) [CrossRef] [PubMed] [Google Scholar]
- M. I. Jordan, T. M. Mitchell, Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260 (2015) https://doi.org/10.1126/science.aaa8415 [CrossRef] [Google Scholar]
- A. M. Karim, H. Kaya, M. S. Güzel, M. R. Tolun, F. V. Çelebi, A. Mishra, A novel framework using deep auto-encoders based linear model for data classification. Sensors, 20(21), 6378 (2020) [CrossRef] [PubMed] [Google Scholar]
- G. C. Koufos, T. Mavromatis, S. Koundouras, G. V. Jones, Adaptive capacity of winegrape varieties cultivated in Greece to climate change: current trends and future projections. Oeno One, 54(4), 1201–1219 (2020) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.