Open Access
Issue
E3S Web of Conf.
Volume 452, 2023
XV International Online Conference “Improving Farming Productivity and Agroecology – Ecosystem Restoration” (IPFA 2023)
Article Number 07025
Number of page(s) 7
Section Environmental Education and Ecotourism
DOI https://doi.org/10.1051/e3sconf/202345207025
Published online 30 November 2023
  1. Isanov R.SH., Fayzibayev Sh.S. Impact of the air flow formed by the movement of a high-speed train on solid particles of the earth’s surface. CONVERTER Magazine Volume 2021, №7 pp. 757-766. [Google Scholar]
  2. Abdusattarov A., Karimov A.M. Methodical solutions for mechanical composite materials and non-elastic element construction in cyclical design. Tashkent, “Uzbekistan”, 2020. [Google Scholar]
  3. Zikirov O.S. Mathematical physics equations. Tashkent, 2017. [Google Scholar]
  4. Bauman G. Mathematics for engineers I-II. Oldenbourg Wissenschaftsverlag GmbH. 2010. [Google Scholar]
  5. Ruize Hu, Caglar Oskay. Nonlocal Homogenization Model for Wave Dispersion and Attenuation in Elastic and Viscoelastic Periodic Layered Media. Journal of Applied Mechanics, 2017, Volume 84, №3, pp. 53-63. [Google Scholar]
  6. Ahn J.Yo., Edwin A. An e-Learning Model for Teaching Matematiks on an Open Source Learning Platform. The International Reviev of Research in Open and Distributed Learning, 2018, Volume 19, Issue 5, pp. 255-267. [Google Scholar]
  7. Kosova E.A., Dyulicheva Yu.Yu. The experience of teaching mathematical disciplines with the use of electronic training and distance educational technology in the period of the COVID-19 pandemic. International journal “Modern information technologies and IT education”, 2020, Volume 16, No. 1 [Google Scholar]
  8. Henri, F. Distance Education and Computer-Assisted Communication. Prospects. 1988; 18(1):85-90. DOI: https://doi.org/10.1007/BF02192961 [CrossRef] [Google Scholar]
  9. Biner P.M., Dean R.S., Mellinger A.E. Factors underlying distance learner satisfaction with televised college-level courses. American Journal of Distance Education. 1994; 8(1):60-71. DOI: https://doi.org/10.1080/08923649409526845 [CrossRef] [Google Scholar]
  10. Armstrong L. Distance Learning: An Academic Leader's Perspective on a Disruptive Product. Change: The Magazine of Higher Learning. 2000; 32(6):20-27. DOI: https://doi.org/10.1080/00091380009601762 [CrossRef] [Google Scholar]
  11. Bozkurt A. Intellectual roots of Distance Education : A progressive knowledge domain analysis. Distance Education. 2019; 40(4):497-514. DOI: https://doi.org/10.1080/01587919.2019.1681894 [CrossRef] [Google Scholar]
  12. Lee K., Choi H., Cho Y.H. Becoming a competent self: A developmental process of adult distance learning. The Internet and Higher Education. 2019; 41:25-33. DOI: https://doi.org/10.1016/j.iheduc.2018.12.001 [CrossRef] [Google Scholar]
  13. Rice M.F., Lowenthal P.R., Woodley X. Distance education across critical theoretical landscapes: touchstones for quality research and teaching. Distance Education. 2020; 41(3):319-325. (In Eng.) DOI: https://doi.org/10.1080/01587919.2020.1790091 [Google Scholar]
  14. Mehta A., Morris N.P., Swinnerton B., Homer M. Influence of Values on E-learning Adoption. Computers & Education. 2019; 141:103617. DOI: https://doi.org/10.1016/j.compedu.2019.103617 [CrossRef] [Google Scholar]
  15. Alqurashi E. Predicting student satisfaction and perceived learning within online learning environments. Distance Education. 2019; 40(1):133-148. DOI: https://doi.org/10.1080/01587919.2018.1553562 [CrossRef] [Google Scholar]
  16. Bernard R.M., Abrami P.C., Borokhovski E., Wade C.A., Tamim R.M., Surkes M.A. A Meta-Analysis of Three Types of Interaction Treatments in Distance Education. Review of Educational Research. 2009; 79:1243-1289. DOI: https://doi.org/10.3102/0034654309333844 [CrossRef] [Google Scholar]
  17. Lim C.K. Computer self-efficacy, academic self-concept, and other predictors of satisfaction and future participation of adult distance learners. American Journal of Distance Education. 2001; 15(2):41-51. DOI: https://doi.org/10.1080/08923640109527083 [CrossRef] [Google Scholar]
  18. Money W.H., Dean B.P. Incorporating student population differences for effective online education: A content-based review and integrative model. Computers & Education. 2019; 138:57-82. DOI: https://doi.org/10.1016/j.compedu.2019.03.013 [CrossRef] [Google Scholar]
  19. Shibani A., Knight S., Shum S.B. Educator perspectives on learning analytics in classroom practice. The Internet and Higher Education. 2020; 46:100730. DOI: https://doi.org/10.1016/j.iheduc.2020.100730 [CrossRef] [Google Scholar]
  20. Alves P., Miranda L., Morais C. The Influence of Virtual Learning Environments in Students'Performance. Universal Journal of Educational Research. 2017; 5(3):517-527. DOI: https://doi.org/10.13189/ujer.2017.050325 [CrossRef] [Google Scholar]
  21. Han H., Johnson S.D. Relationship between Students’Emotional Intelligence, Social Bond, and Interactions in Online Learning. Educational Technology & Society. 2012: 15(1):78-89. Available at: https://www.ds.unipi.gr/et&s/journals/15_1/8.pdf (accessed 17.06.2020). [Google Scholar]
  22. Fryer L.K., Bovee H.N. Supporting students'motivation for e-learning: Teachers matter on and offline. The Internet and Higher Education. 2016; 30:21-29. DOI: https://doi.org/10.1016/j.iheduc.2016.03.003 [CrossRef] [Google Scholar]
  23. Cho M.-H., Tobias S. Should Instructors Require Discussion in Online Courses? Effects of Online Discussion on Community of Inquiry, Learner Time, Satisfaction, and Achievement. The International Review of Research in Open and Distributed Learning. 2016; 17(2):123-140. DOI: https://doi.org/10.19173/irrodl.v17i2.2342 [Google Scholar]
  24. Mehta A., Morris N.P., Swinnerton B., Homer M. Influence of Values on E-learning Adoption. Computers & Education. 2019; 141:103617. DOI: https://doi.org/10.1016/j.compedu.2019.103617 [CrossRef] [Google Scholar]
  25. Isanov R.SH., The effect of the air flow formed by the movement of a high-speed train on the boundary layer. American Journal of Research 5-6, May-June 2021, pp. 18-22. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.