Open Access
Issue |
E3S Web Conf.
Volume 453, 2023
International Conference on Sustainable Development Goals (ICSDG 2023)
|
|
---|---|---|
Article Number | 01016 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/e3sconf/202345301016 | |
Published online | 30 November 2023 |
- Denning, Dorothy E. “An Intrusion-Detection Model.” IEEE Transactions on Software Engineering SE-13 (1987): 222-232. [CrossRef] [Google Scholar]
- Xu, X. (2006). Adaptive intrusion detection based on machine learning: feature extraction, classifier construction and sequential pattern prediction. International Journal of Web Services Practices, 2(1-2), 49-58. [Google Scholar]
- H. Sarvari and M. M. Keikha, “Improving the accuracy of intrusion detection systems by using the combination of machine learning approaches, ” 2010 International Conference of Soft Computing and Pattern Recognition, 2010, pp. 334 https://doi.org/10.1109/SOCPAR.2010.5686163 [Google Scholar]
- Mukherjee, S., & Sharma, N. (2012). Intrusion detection using naive Bayes classifier with feature reduction. Procedia Technology, 4, 119-128. [CrossRef] [Google Scholar]
- Farnaaz, Nabila, and M. A. Jabbar. “Random forest modeling for network intrusion detection system.” Procedia Computer Science 89 (2016): 213-217. [CrossRef] [Google Scholar]
- Lee, J. H., Lee, J. H., Sohn, S. G., Ryu, J. H., & Chung, T. M. (2008, February). Effective value of decision tree with KDD 99 intrusion detection datasets for intrusion detection system. In 2008 [Google Scholar]
- 10th International conference on advanced communication technology (Vol. 2, pp. 1170-1175). IEEE. Tsai, C. F., & Lin, C. Y. (2010). A triangle area based nearest neighbors approach to intrusion detection. Pattern recognition, 43(1), 222-229. [Google Scholar]
- Khammassi, C., & Krichen, S. (2017). A GA-LR wrapper approach for feature selection in network intrusion detection. Computers & security, 70, 255-277. [CrossRef] [Google Scholar]
- Osuna, E., Freund, R., & Girosi, F. (1997, September). An improved training algorithm for support vector machines. In Neural networks for signal processing VII. Proceedings of the 1997 IEEE signal processing society workshop (pp. 276-285). IEEE. [CrossRef] [Google Scholar]
- Tsai, C. F., Hsu, Y. F., Lin, C. Y., & Lin, W. Y. (2009). Intrusion detection by machine learning: A review. Expert Systems with Applications, 36(10), 11994-12000. [CrossRef] [Google Scholar]
- Patcha, A., & Park, J. M. (2007). An overview of anomaly detection techniques: Existing solutions and latest technological trends. Computer networks, 51(12), 3448-3470. [CrossRef] [Google Scholar]
- Mandala, S., Ngadi, M. A., & Abdullah, A. H. (2007). A survey on MANET intrusion detection. International Journal of Computer Science and Security, 2(1), 1-11. [Google Scholar]
- Ahmed, G., Hussain, M., & Khan, M. N. A. (2014). Characterizing Strengths of Snort-based IDPS. Research Journal of Recent Sciences ISSN, 2277-2502. [Google Scholar]
- Mahfouz, A., Abuhussein, A., Venugopal, D., & Shiva, S. (2020). Ensemble classifiers for network intrusion detection using a novel network attack dataset. Future Internet, 12(11), 180. [CrossRef] [Google Scholar]
- MeeraGandhi, G. (2010). Machine learning approach for attack prediction and classification using supervised learning algorithms. Int. J. Comput. Sci. Commun, 1(2), 247-250. [Google Scholar]
- Khan, L., Awad, M., & Thuraisingham, B. (2007). A new intrusion detection system using support vector machines and hierarchical clustering. The VLDB journal, 16(4), 507-521. [CrossRef] [Google Scholar]
- Sarker, I. H., Kayes, A. S. M., Badsha, S., Alqahtani, H., Watters, P., & Ng, A. (2020). Cybersecurity data science: an overview from machine learning perspective. Journal of Big data, 7(1), 1-29. https://doi.org/10.1186/s40537-020-00318-5 [CrossRef] [Google Scholar]
- Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A practical guide to support vector classification. Kuang, F., Xu, W., & Zhang, S. (2014). A novel hybrid KPCA and SVM with GA model for intrusion detection. Applied Soft Computing, 18, 178-184. [Google Scholar]
- Mayhew, M., Atighetchi, M., Adler, A., & Greenstadt, R. (2015, October). Use of machine learning in big data analytics for insider threat detection. In MILCOM 2015-2015 IEEE Military Communications Conference (pp. 915922). IEEE. [Google Scholar]
- Khraisat, A., Gondal, I., Vamplew, P., & Kamruzzaman, J. (2019). Survey of intrusion detection systems: techniques, datasets, and challenges. Cybersecurity, 2(1), 1-22. [Google Scholar]
- Liao, H. J., Lin, C. H. R., Lin, Y. C., & Tung, K. Y. (2013). Intrusion detection system: A comprehensive review. Journal of Network and Computer Applications, 36(1), 16-24. [CrossRef] [Google Scholar]
- Choudhary, S., & Kesswani, N. (2020). Analysis of KDD-Cup’99, NSL-KDD and UNSWNB15 datasets using deep learning in IoT. Procedia Computer Science, 167, 1561-1573. [CrossRef] [Google Scholar]
- Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009, July). A detailed analysis of the KDD CUP 99 data set. In 2009 IEEE symposium on computational intelligence for security and defense applications (pp. 1-6). IEEE. [Google Scholar]
- Kuang, F., Zhang, S., Jin, Z., & Xu, W. (2015). A novel SVM by combining kernel principal component analysis and improved chaotic particle swarm optimization for intrusion detection. Soft Computing, 19(5), 1187-1199. https://doi.org/10.1007/s00500-014-1332-7 [CrossRef] [Google Scholar]
- Ahmad, I., Hussain, M., Alghamdi, A., & Alelaiwi, A. (2014). Enhancing SVM performance in intrusion detection using optimal feature subset selection based on genetic principal components. Neural computing and applications, 24(7), 1671-1682. https://doi.org/10.1007/s00521013-1370-6 [CrossRef] [Google Scholar]
- Bijone, M. (2016). A survey on secure network: intrusion detection & prevention approaches. American Journal of Information Systems, 4(3), 69-88. [Google Scholar]
- Atefi, K., Yahya, S., Dak, A. Y., & Atefi, A. (2013). A hybrid intrusion detection system based on different machine learning algorithms. [Google Scholar]
- Zhao, G., Song, J., & Song, J. (2013, March). Analysis about performance of multiclass SVM applying in IDS. In International Conference on Information, Business and Education Technology ICIBIT. [Google Scholar]
- Nerlikar, P., Pandey, S., Sharma, S., & Bagade, S. (2020). Analysis of intrusion detection using machine learning techniques. International Journal of Computer Networks and Communications Security, 8(10), 84-93. [Google Scholar]
- Aburomman, A. A., & Reaz, M. B. I. (2016). A novel SVM-kNN-PSO ensemble method for intrusion detection system. Applied Soft Computing, 38, 360-372. [CrossRef] [Google Scholar]
- Wang, J., Hong, X., Ren, R. R., & Li, T. H. (2009). A real-time intrusion detection system based on PSO-SVM. In Proceedings. The 2009 International Workshop on Information Security and Application (IWISA 2009) (p. 319). Academy Publisher. [Google Scholar]
- Lin, S. W., Ying, K. C., Lee, C. Y., & Lee, Z. J. (2012). An intelligent algorithm with feature selection and decision rules applied to anomaly intrusion detection. Applied Soft Computing, 12(10), 3285-3290. [CrossRef] [Google Scholar]
- Mulay, S. A., Devale, P. R., & Garje, G. V. (2010, June). Decision tree based support vector machine for intrusion detection. In 2010 International Conference on Networking and Information Technology (pp. 59-63). IEEE. [Google Scholar]
- Li, Y., Xia, J., Zhang, S., Yan, J., Ai, X., & Dai, K. (2012). An efficient intrusion detection system based on support vector machines and gradually feature removal method. Expert systems with applications, 39(1), 424-430. [CrossRef] [Google Scholar]
- Chen, W. H., Hsu, S. H., & Shen, H. P. (2005). Application of SVM and ANN for intrusion detection. Computers & Operations Research, 32(10), 2617-2634. [CrossRef] [Google Scholar]
- Mukkamala, S., Janoski, G., & Sung, A. (2002, May). Intrusion detection using neural networks and support vector machines. In Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN’02 (Cat. No. 02CH37290) (Vol. 2, pp. 1702-1707). IEEE. [Google Scholar]
- Ahanger, A. S., Khan, S. M., & Masoodi, F. (2021, April). An effective intrusion detection system using supervised machine learning techniques. In 2021 5th International Conference on Computing Methodologies and Communication (ICCMC) (pp. 1639-1644). IEEE. [Google Scholar]
- Bhavsar, Y. B., & Waghmare, K. C. (2013). Intrusion detection system using data mining technique: Support vector machine. International Journal of Emerging Technology and Advanced Engineering, 3(3), 581-586. [Google Scholar]
- Bhati, B. S., & Rai, C. S. (2020). Analysis of support vector machine-based intrusion detection techniques. Arabian Journal for Science and Engineering, 45(4), 2371-2383. [CrossRef] [Google Scholar]
- Hsiao-Ying, Lin., Battista, Biggio. (2021). Adversarial Machine Learning: Attacks From Laboratories to the Real World. IEEE Computer, 54(5):56-60. doi:10.1109/MC.2021.3057686 [Google Scholar]
- Hamidreza, Habibollahi, Najaf, Abadi. (2021). Adversarial Machine Learning Attacks on Condition-Based Maintenance Capabilities.. arXiv: Learning [Google Scholar]
- Akm, Iqtidar, Newaz., Amit, Kumar, Sikder., Mohammad, Ashiqur, Rahman., A., Selcuk, Uluagac. (2019). HealthGuard: A Machine Learning-Based Security Framework for Smart Healthcare Systems. 389-396. doi:10.1109/SNAMS.2019.8931716 [Google Scholar]
- Akm, Iqtidar, Newaz., Amit, Kumar, Sikder., Mohammad, Ashiqur, Rahman., A., Selcuk, Uluagac. (2019). HealthGuard: A Machine Learning-Based Security Framework for Smart Healthcare Systems. 389-396. doi:10.1109/SNAMS.2019.8931716 [Google Scholar]
- Eirini, Anthi., Lowri, Williams., Malgorzata, Slowinska., George, Theodorakopoulos., Peter, Burnap. (2019). A Supervised Intrusion Detection System for Smart Home IoT Devices. IEEE Internet of Things Journal, 6(5):90429053. doi:10.1109/JIOT.2019.2926365 [Google Scholar]
- Sandy, H., Huang., Nicolas, Papernot., Ian, Goodfellow., Yan, Duan., Pieter, Abbeel. (2017). Adversarial Attacks on Neural Network Policies. [Google Scholar]
- Naveed, Akhtar., Ajmal, Mian. (2018). Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey. IEEE Access, 6:14410-14430. doi:10.1109/ACCESS.2018.2807385 [CrossRef] [Google Scholar]
- Ishai, Rosenberg., Asaf, Shabtai., Lior, Rokach., Yuval, Elovici. (2018). Generic Black-Box End-to-End Attack Against State of the Art API Call Based Malware Classifiers. 490-510. doi:10.1007/978-3-030-00470-5_23 [Google Scholar]
- Ishai, Rosenberg., Asaf, Shabtai., Lior, Rokach., Yuval, Elovici. (2017). Generic Black-Box End-to-End Attack Against State of the Art API Call Based Malware Classifiers. arXiv: Cryptography and Security [Google Scholar]
- Eirini, Anthi., Lowri, Williams., Malgorzata, Slowinska., George, Theodorakopoulos., Peter, Burnap. (2019). A Supervised Intrusion Detection System for Smart Home IoT Devices. IEEE Internet of Things Journal, 6(5):9042-9053. doi:10.1109/JIOT.2019.2926365 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.