Open Access
Issue |
E3S Web Conf.
Volume 453, 2023
International Conference on Sustainable Development Goals (ICSDG 2023)
|
|
---|---|---|
Article Number | 01042 | |
Number of page(s) | 24 | |
DOI | https://doi.org/10.1051/e3sconf/202345301042 | |
Published online | 30 November 2023 |
- Adegbite, O. O., & Machethe, C. L. (2020). Bridging the Financial Inclusion Gender Gap in Smallholder Agriculture in Nigeria: An untapped potential for sustainable development. World Development, 127, 104755. https://doi.org/10.1016/j.worlddev.2019.104755 [CrossRef] [Google Scholar]
- Adenle, A. A., Azadi, H., & Manning, L. (2017). The era of Sustainable Agricultural Development in Africa: Understanding the benefits and constraints. Food Reviews International, 34(5), 411–433. doi:10.1080/87559129.2017.1300913 [Google Scholar]
- Al-Ghussain, L. (2018). Global warming: Review on Driving Forces and mitigation. Environmental Progress & Sustainable Energy, 38(1), 13–21. https://doi.org/10.1002/ep.13041 [Google Scholar]
- Anderson do Espirito Santo Pereira, A., Caixeta Oliveira, H., Fernandes Fraceto, L., & Santaella, C. (2021). Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials, 11(2), 267. https://doi.org/10.3390%2Fnano11020267 [CrossRef] [PubMed] [Google Scholar]
- Anderson, R., Bayer, P. E., & Edwards, D. (2020). Climate change and the need for agricultural adaptation. Current Opinion in Plant Biology, 56, 197–202. https://doi.org/10.1016/j.pbi.2019.12.006 [CrossRef] [PubMed] [Google Scholar]
- Ariom, T. O., Dimon, E., Nambeye, E., Diouf, N. S., Adelusi, O. O., & Boudalia, S. (2022). Retrieved from https://www.mdpi.com/2071-1050/14/18/11370 [Google Scholar]
- Balint, T., Lamperti, F., Mandel, A., Napoletano, M., Roventini, A., & Sapio, A. (2017). Complexity and the economics of climate change: A survey and a look forward. Ecological Economics, 138, 252–265. https://doi.org/10.1016/j.ecolecon.2017.03.032 [CrossRef] [Google Scholar]
- Banerjee, A. et al. (2021). Climate Change Vulnerability and Agroecosystem Services. In: Jhariya, https://doi.org/10.1007/978-981-16-3207-5_6 [Google Scholar]
- Bennetzen, E., Smith, P., & Porter, J. R. (2016). Agricultural production and greenhouse gas emissions from world regions—The major trends over 40 years. Global Environmental Change, 37, 43-55. doi:10.1016/j.gloenvcha.2016.01.009 [CrossRef] [Google Scholar]
- Bera, S., Arora, R., Ateba, C. N., & Kumar, A. (2022). Microbes: A sustainable tool for healthy and climate smart agriculture. In Relationship Between Microbes and the Environment for Sustainable Ecosystem Services, Volume 1 (pp. 197-213). Elsevier. [CrossRef] [Google Scholar]
- Bhalerao, A. K., Rasche, L., Scheffran, J., & Schneider, U. A. (2022). Sustainable agriculture in Northeastern India: how do tribal farmers perceive and respond to climate change?. International Journal of Sustainable Development & World Ecology, 29(4), 291302. [CrossRef] [Google Scholar]
- Bhardwaj, M., Kumar, P., Kumar, S. et al. A district-level analysis for measuring the effects of climate change on production of agricultural crops, i.e., wheat and paddy: evidence from India. Environ Sci Pollut Res 29, 31861–31885 (2022). https://doi.org/10.1007/s11356-021-17994-2 [CrossRef] [PubMed] [Google Scholar]
- Bharti, N. (2018). Evolution of agriculture finance in India: A historical perspective. Agricultural Finance Review, 78(3), 376–392. doi:10.1108/afr-05-2017-0035 [CrossRef] [Google Scholar]
- Brar, A. S., Kaur, K., Sindhu, V. K., Tsolakis, N., & Srai, J. S. (2022). Sustainable water use through multiple cropping systems and precision irrigation. Journal of Cleaner Production, 333, 130117. https://doi.org/10.1016/j.jclepro.2021.130117 [CrossRef] [Google Scholar]
- Brar, A. S., Kaur, K., Sindhu, V. K., Tsolakis, N., & Srai, J. S. (2022). Sustainable water use through multiple cropping systems and precision irrigation. Journal of Cleaner Production, 333, 130117. https://doi.org/10.1016/j.jclepro.2021.130117 [CrossRef] [Google Scholar]
- Buchner, B., Falconer, A., Hervé-Mignucci, M., Trabacchi, C., & Brinkman, M. (2010). Retrieved from https://climate-adapt.eea.europa.eu/en/metadata/publications/globallandscape-of-climate-finance-2019 [Google Scholar]
- Carlisle, L., Montenegro de Wit, M., DeLonge, M. S., Iles, A., Calo, A., Getz, C., … Press, D. (2019). Transitioning to sustainable agriculture requires growing and sustaining an ecologically skilled workforce. Frontiers in Sustainable Food Systems, 3. doi:10.3389/fsufs.2019.00096 [CrossRef] [Google Scholar]
- Carroll, A. (2020). Retrieved from https://www.agriinvestor.com/responsible-investing-a-z-w-is-for-water-management/ [Google Scholar]
- Challinor, A. J., Watson, J., Lobell, D. B., Howden, S. M., Smith, D. R., & Chhetri, N. (2014). A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change, 4(4), 287–291. https://doi.org/10.1038/nclimate2153 [CrossRef] [Google Scholar]
- Chaudhary, P., Singh, S., Chaudhary, A., Sharma, A., & Kumar, G. (2022). Retrieved from https://www.frontiersin.org/articles/10.3389/fpls.2022.930340/full [Google Scholar]
- Chhogyel, N., Kumar, L., & Bajgai, Y. (2020). Consequences of climate change impacts and incidences of extreme weather events in relation to crop production in Bhutan. Sustainability, 12(10), 4319. https://doi.org/10.3390/su12104319 [CrossRef] [Google Scholar]
- Cox, S. (2022). Inscriptions of resilience: Bond ratings and the government of climate risk in Greater Miami, Florida. Environment and Planning A: Economy and Space, 54(2), 295-310. https://doi.org/10.1177/0308518X211054162 [CrossRef] [Google Scholar]
- Das, T. K., Bandyopadhyay, K. K., & Ghosh, P. K. (2021). Impact of conservation agriculture on soil health and crop productivity under irrigated ecosystems. Conservation Agriculture: A Sustainable Approach for Soil Health and Food Security, 139–163. https://doi.org/10.1007/978-981-16-0827-8_7 [CrossRef] [Google Scholar]
- Davis, V. (2023). Impact of climate changes on agriculture and Livestock. International Journal of Climatic Studies, 2(1), 28–39. https://doi.org/10.47604/ijcs.1829 [CrossRef] [Google Scholar]
- Dikau, S., & Volz, U. (2019). Central Banking, climate change, and Green Finance. Handbook of Green Finance, 81–102. https://doi.org/10.1007/978-981-13-0227-5_17 [CrossRef] [Google Scholar]
- Dikau, S., & Volz, U. (2023). Out of the window? Green monetary policy in China: window guidance and the promotion of sustainable lending and investment. Climate Policy, 23(1), 122–137. https://doi.org/10.1080/14693062.2021.2012122. [CrossRef] [Google Scholar]
- Downing, A. S., Kumar, M., Andersson, A., Causevic, A., Gustafsson, Ö., Joshi, N. U., … Crona, B. (2022). Retrieved from https://research.rug.nl/en/publications/unlocking-theunsustainable-rice-wheat-system-of-indian-punjab-as [Google Scholar]
- Economics Times. (2021). Less than four percent Indian farmers adopted sustainable agricultural practices, says study. https://economictimes.indiatimes.com/. https://economictimes.indiatimes.com/news/economy/agriculture/less-than-four-percentindian-farmers-adopted-sustainable-agricultural-practices-saysstudy/articleshow/82165017.cms?from=mdr [Google Scholar]
- Ehlers, T., Gardes-Landolfini, C., Natalucci, F., & Ananthakrishnan, P. (2022, October 7). How to scale up private climate finance in emerging economies. IMF. https://www.imf.org/en/Blogs/Articles/2022/10/07/how-to-scale-up-private-climate-finance-in-emerging-economies [Google Scholar]
- Engdaw, B. D. (2020). Assessment of the trends of greenhouse gas emission in Ethiopia. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY, 13(2), 135–146. https://doi.org/10.24057/2071-9388-2018-61 [CrossRef] [Google Scholar]
- Engdaw, B. D. (2020). Assessment of the trends of greenhouse gas emission in Ethiopia. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY, 13(2), 135–146. https://doi.org/10.24057/2071-9388-2018-61 [CrossRef] [Google Scholar]
- Environmental and Energy Study Institute (EESI). (2021). Retrieved from https://www.eesi.org/briefings/view/102021cop [Google Scholar]
- European Union European Regional Development Fund. (2020). Retrieved from https://projects20142020.interregeurope.eu/fileadmin/user_upload/tx_tevprojects/library/file_1643640682.pdf [Google Scholar]
- Falcone, P. M., Morone, P., & Sica, E. (2018). Greening of the financial system and fuelling a sustainability transition. Technological Forecasting and Social Change, 127, 23–37. doi:10.1016/j.techfore.2017.05.020 [CrossRef] [Google Scholar]
- FAO. (2020). Retrieved from https://www.fao.org/3/cb3808en/cb3808en.pdf [Google Scholar]
- FAO. (2013). Food and Agriculture Organization of the United Nations. Retrieved from http://www.fao.org/home/en/ [Google Scholar]
- FAO. (2016). The state of Food and Agriculture. FAO.org. https://www.fao.org/publications/home/fao-flagship-publications/the-state-of-food-and-agriculture/2016/en [Google Scholar]
- Friesland Campina. (2016). Retrieved from https://www.frieslandcampina.com/news/frieslandcampina-issues-300-million-euro-green-promissory-note/ [Google Scholar]
- Gany, A. H., Sharma, P., & Singh, S. (2018). Global Review of institutional reforms in the irrigation sector for sustainable agricultural water management, including Water Users’ associations. Irrigation and Drainage, 68(1), 84–97. doi:10.1002/ird.2305 [Google Scholar]
- Gashler, K. (2020). Retrieved from https://cals.cornell.edu/news/make-agriculture-sustainablegovernments-must-prioritize-policy [Google Scholar]
- Ghelich, V. (2019). Retrieved from https://www.cabdirect.org/cabdirect/abstract/20193120538 Gibson, R., Glossner, S., Krueger, P., Matos, P., & Steffen, T. (2019). Responsible institutional [Google Scholar]
- investing around the world. SSRN Electronic Journal. doi:10.2139/ssrn.3525530 [Google Scholar]
- Giglio, S., Kelly, B., & Stroebel, J. (2021). Climate finance. Annual Review of Financial Economics, 13(1), 15–36. https://doi.org/10.1146/annurev-financial-102620-103311 [CrossRef] [Google Scholar]
- Glemarec, Y. (2022). How to ensure that investment in new climate solutions is sufficient to avert catastrophic climate change. Enhanced Direct Access: The First Decade, 445–474. https://doi.org/10.4337/9781784715656.00028 [Google Scholar]
- Green Climate Fund. (2021). Retrieved from https://www.greenclimate.fund/ [Google Scholar]
- Guo, L., Li, H., Cao, X., Cao, A., & Huang, M. (2021). Effect of agricultural subsidies on the use of chemical fertilizer. Journal of Environmental Management, 299, 113621. doi:10.1016/j.jenvman.2021.113621 [CrossRef] [PubMed] [Google Scholar]
- Guo, L., Zhao, S., Song, Y., Tang, M., & Li, H. (2022). Green Finance, chemical fertilizer use and carbon emissions from Agricultural Production. Agriculture, 12(3), 313. doi:10.3390/agriculture12030313 [CrossRef] [Google Scholar]
- Gupta, G. S. (2019). Land degradation and challenges of food security. Review of European Studies, 11(1), 63. https://doi.org/10.5539/res.v11n1p63 [CrossRef] [Google Scholar]
- Harvey, M., & Pilgrim, S. (2011). The new competition for land: Food, Energy, and climate change. Food Policy, 36. https://doi.org/10.1016/j.foodpol.2010.11.009 [Google Scholar]
- Herrero, M., Thornton, P. K., Notenbaert, A. M., Wood, S., Msangi, S., Freeman, H. A., … Rosegrant, M. (2010). Smart Investments in sustainable food production: Revisiting mixed crop-livestock systems. Science, 327 (5967), 822–825. doi:10.1126/science.1183725 [CrossRef] [PubMed] [Google Scholar]
- Herweijer, C., Ranger, N., & Ward, R. E. (2009). Adaptation to climate change: Threats and opportunities for the insurance industry. The Geneva Papers on Risk and Insurance Issues and Practice, 34(3), 360–380. doi:10.1057/gpp.2009.13 [CrossRef] [Google Scholar]
- Horrigan, L., Lawrence, R. S., & Walker, P. (2002). How sustainable agriculture can address the environmental and human health harms of industrial agriculture. Environmental Health Perspectives, 110(5), 445–456. https://doi.org/10.1289/ehp.02110445 [CrossRef] [PubMed] [Google Scholar]
- Hunt, M. L., Blackburn, G. A., & Rowland, C. S. (2019). Monitoring the sustainable intensification of arable agriculture: The potential role of earth observation. International Journal of Applied Earth Observation and Geoinformation, 81, 125–136. https://doi.org/10.1016/j.jag.2019.05.013 [CrossRef] [Google Scholar]
- IFAD. (2020). Retrieved from https://www.ifad.org/documents/38714170/%2042157470/climate-finance-gap_smallscale_agr.%20pdf/34b2e25b-7572-b31d-6d0c-d5ea5ea8f96f [Google Scholar]
- IFAD. (2021). Climate finance neglects small-scale farmers – new report. IFAD investing in rural people. https://www.ifad.org/en/web/latest/-/news/climate-finance-neglects-small-scale-farmers-new-report [Google Scholar]
- IPCC. (2018). Summary for policymakers. Understanding Global Warming of 1.5 oC. https://www.ipcc.ch/sr15/chapter/spm/ [Google Scholar]
- Jayaraman, S., Dang, Y. P., Naorem, A., Page, K. L., & Dalal, R. C. (2021). Conservation Agriculture as a system to enhance ecosystem services. Agriculture, 11(8), 718. https://doi.org/10.3390/agriculture11080718 [CrossRef] [Google Scholar]
- Kabeyi, M. J., & Olanrewaju, O. A. (2022). Sustainable energy transition for renewable and low carbon grid electricity generation and supply. Frontiers in Energy Research, 9. doi:10.3389/fenrg.2021.743114 [CrossRef] [Google Scholar]
- Khanna, N. (2023). Retrieved from https://www.climatepolicyinitiative.org/publication/landscape-of-green-finance-in-india-2022/ [Google Scholar]
- Kivimaa, P., & Kern, F. (2016). Creative destruction or mere niche support? innovation policy mixes for Sustainability Transitions. Research Policy, 45(1), 205–217. https://doi.org/10.1016/j.respol.2015.09.008 [CrossRef] [Google Scholar]
- Kuehne, G. (2021). The human impact from Indian farmers productive but damaging use of pesticides. Handbook on the Human Impact of Agriculture. https://doi.org/10.4337/9781839101748.00023 [Google Scholar]
- Lal, R., & Stewart, B. A. (2013). Principles of Sustainable Soil Management in Agroecosystems (1st ed., Vol. 1). CRS Press. [CrossRef] [Google Scholar]
- Lan, K., & Yao, Y. (2019). Integrating life cycle assessment and agent-based modeling: a dynamic modeling framework for sustainable agricultural systems. Journal of Cleaner Production, 238, 117853. [CrossRef] [Google Scholar]
- Lazaro, L. L. B., Grangeia, C. S., Santos, L., & Giatti, L. L. (2023). What is Green Finance, after all? – exploring definitions and their implications under the Brazilian Biofuel Policy (renovabio). Journal of Climate Finance, 2, 100009. https://doi.org/10.1016/j.jclimf.2023.100009 [CrossRef] [Google Scholar]
- Levidow, L., Zaccaria, D., Maia, R., Vivas, E., Todorovic, M., & Scardigno, A. (2014). Improving water-efficient irrigation: Prospects and difficulties of innovative practices. Agricultural Water Management, 146, 84–94. doi:10.1016/j.agwat.2014.07.012 [CrossRef] [Google Scholar]
- Levin, K., Cashore, B., Bernstein, S., & Auld, G. (2012). Overcoming the tragedy of super wicked problems: Constraining our future selves to ameliorate global climate change. Policy Sciences, 45(2), 123–152. https://doi.org/10.1007/s11077-012-9151-0 [CrossRef] [Google Scholar]
- Linnerooth-Bayer, J., & Hochrainer-Stigler, S. (2014). Financial Instruments for Disaster Risk Management and climate change adaptation. Climatic Change, 133(1), 85–100. https://doi.org/10.1007/s10584-013-1035-6 [Google Scholar]
- Loukoianova, E., Prasad, A., Oman, W., & Xiaochen Feng, A. (2022). Mobilizing private climate financing in emerging market and developing economies. Staff Climate Notes, 2022(007), 1. https://doi.org/10.5089/9798400216428.066 [CrossRef] [Google Scholar]
- Lynch, J., Cain, M., Frame, D., & Pierrehumbert, R. (2021a). Agriculture’s contribution to climate change and role in mitigation is distinct from predominantly fossil CO2-emitting sectors. Frontiers in Sustainable Food Systems, 4. https://doi.org/10.3389/fsufs.2020.518039 [CrossRef] [PubMed] [Google Scholar]
- Lynch, J., Cain, M., Frame, D., & Pierrehumbert, R. (2021b). Agriculture’s contribution to climate change and role in mitigation is distinct from predominantly fossil CO2-emitting sectors. Frontiers in Sustainable Food Systems, 4. https://doi.org/10.3389/fsufs.2020.518039 [CrossRef] [PubMed] [Google Scholar]
- M. Tahat, M., M. Alananbeh, K., A. Othman, Y., & I. Leskovar, D. (2020). Soil health and sustainable agriculture. Sustainability, 12(12), 4859. [CrossRef] [Google Scholar]
- Mahmud, A. A., Bhojiya, A. A., Raj, A., & Jhariya, M. K. (2021). Climate change adaptation and mitigation through a traditional agroforestry system. In Advances in Sustainable Development and Management of Environmental and Natural Resources (pp. Vol1-375). Apple Academic Press. [Google Scholar]
- Mattoon, W. R. (1938). How to Cut Southern Farm Timber for Steady Profit. doi:10.5962/bhl.title.65236 [Google Scholar]
- McCord, P. F., Cox, M., Schmitt-Harsh, M., & Evans, T. (2015). Crop diversification as a smallholder livelihood strategy within semi-arid agricultural systems near Mount Kenya. Land Use Policy, 42, 738–750. https://doi.org/10.1016/j.landusepol.2014.10.012 [CrossRef] [Google Scholar]
- McKinsey Sustainability. (2021). Retrieved from https://www.mckinsey.com/capabilities/sustainability/our-insights/its-time-for-philanthropy-to-step-up-the-fight-against-climate-change [Google Scholar]
- Meshesha, A. T., Birhanu, B. S., & Bezabih Ayele, M. (2022). Effects of perceptions on adoption of climate-smart agriculture innovations: empirical evidence from the upper Blue Nile Highlands of Ethiopia. International Journal of Climate Change Strategies and Management, 14(3), 293–311. https://doi.org/10.1108/IJCCSM-04-2021-0035 [CrossRef] [Google Scholar]
- Mukherjee, K., Konar, A., & Ghosh, P. (2022). Organic farming in India: A brief review. International Journal of Research in Agronomy, 5(2), 113–118. https://doi.org/10.33545/2618060x.2022.v5.i2b.120 [CrossRef] [Google Scholar]
- Muralidharan, R., Bhar, S., & Malhotra, A. (2021). Retrieved from https://ifmrlead.org/a-primerto-climate-finance-in-india/ [Google Scholar]
- Nazir, A., Farooq, M., Farooq, B., Anjum, S., & Yousuf, S. (2023). Soil Microbial Community and Climate Change Drivers. In Climate Change and Microbiome Dynamics: Carbon Cycle Feedbacks (pp. 111-120). Cham: Springer International Publishing. [CrossRef] [Google Scholar]
- Negra, C., Remans, R., Attwood, S., Jones, S., Werneck, F., & Smith, A. (2020). Sustainable AgriFood Investments require multi-sector co-development of decision tools. Ecological Indicators, 110, 105851. doi:10.1016/j.ecolind.2019.105851 [CrossRef] [Google Scholar]
- Neumann, M. (2023). Towards new approaches of understanding the greening of Capital Markets. The Political Economy of Green Bonds in Emerging Markets, 41–86. https://doi.org/10.1007/978-3-031-30502-3_3 [CrossRef] [Google Scholar]
- Nikolaou, G., Neocleous, D., Christou, A., Kitta, E., & Katsoulas, N. (2020). Implementing sustainable irrigation in water-scarce regions under the impact of climate change. Agronomy, 10(8), 1120. https://doi.org/10.3390/agronomy10081120 [CrossRef] [Google Scholar]
- Noh, H. J. (2019). Financial strategies to accelerate Green Growth. Handbook of Green Finance, 2(1), 37–61. doi:10.1007/978-981-13-0227-5_16 [CrossRef] [Google Scholar]
- Ogieriakhi, M. O., & Woodward, R. T. (2022). Understanding why farmers adopt soil conservation tillage: A systematic review. Soil Security, 9, 100077. doi:10.1016/j.soisec.2022.100077 [CrossRef] [Google Scholar]
- Pamučar, D., Behzad, M., Božanić, D., & Behzad, M. (2021). Decision making to support sustainable energy policies corresponding to agriculture sector: Case study in Iran’s Caspian Sea coastline. Journal of Cleaner Production, 292, 125302. https://doi.org/10.1016/j.jclepro.2020.125302 [CrossRef] [Google Scholar]
- Pani, A., Ghatak, I., & Mishra, P. (2021). Understanding the water conservation and management in India: An integrated study. Sustainable Water Resources Management, 7(5). doi:10.1007/s40899-021-00556-2 [CrossRef] [PubMed] [Google Scholar]
- Parry, J.-E., & Boyle, J. (2012). IISD Food Security and Climate Change Initiative. IISD.org. https://www.oeko.de/fileadmin/oekodoc/Background_paper_Oeko-Institut_climate_finance_agriculture_2020.pdf [Google Scholar]
- Paustian, K., Campbell, N., Dorich, C., Marx, E., & Swan, A. (2016). Assessment of Potential Greenhouse Gas Mitigation from Changes to Crop Root Mass and Architecture. https://doi.org/10.2172/1339423 [CrossRef] [Google Scholar]
- Person, & Bhat, S. (2023). Retrieved from https://www.reuters.com/business/sustainable-business/indias-cost-adapting-climate-change-needs-seen-1-trillion-by-2030-report-202305-03/?taid=64526ff4b4eebc0001e86c8e [Google Scholar]
- Person. (2022). Retrieved from https://www.reuters.com/business/environment/india-says-more-clarity-needed-climate-finance-definition-2022-11-04/ [Google Scholar]
- Pope, R. D., & Kramer, R. A. (1979). Production uncertainty and factor demands for the competitive firm. Southern Economic Journal, 46(2), 489. doi:10.2307/1057421 [CrossRef] [Google Scholar]
- Prasad, A., Loukoianova, E., Feng, A. X., & Oman, W. (2022, July 27). Mobilizing private climate financing in emerging market and developing economies. IMF. https://www.imf.org/en/Publications/staff-climate-notes/Issues/2022/07/26/Mobilizing-Private-Climate-Financing-in-Emerging-Market-and-Developing-Economies-520585 [Google Scholar]
- Priyadarshini, P., & Abhilash, P. C. (2020). Policy recommendations for enabling transition towards sustainable agriculture in India. Land Use Policy, 96, 104718. https://doi.org/10.1016/j.landusepol.2020.104718 [CrossRef] [Google Scholar]
- Ravindra, K., Singh, T., & Mor, S. (2021). Covid-19 pandemic and sudden rise in crop residue burning in India: Issues and prospects for Sustainable Crop Residue Management. Environmental Science and Pollution Research, 29(2), 3155–3161. doi:10.1007/s11356021-17550-y [Google Scholar]
- Rojas-Downing, M. M., Nejadhashemi, A. P., Harrigan, T., & Woznicki, S. A. (2017). Climate change and livestock: Impacts, adaptation, and mitigation. Climate risk management, 16, 145–163.https://doi.org/10.1016/j.crm.2017.02.001 [CrossRef] [Google Scholar]
- Rudnicki, R., Biczkowski, M., Wiśniewski, Ł., Wiśniewski, P., Bielski, S., & Marks-Bielska, R. (2023). Towards green agriculture and sustainable development: Pro-Environmental activity of farms under the Common Agricultural Policy. Energies, 16(4), 1770. https://doi.org/10.3390/en16041770 [CrossRef] [Google Scholar]
- Sahoo, S.K., Lenka, B., Raj, A., Jhariya, M.K., “Climate Change Impacts and Mitigation Through Sustainable Agroforestry Practices”. Advances in Sustainable Development and Management of Environmental and Natural Resources: Economic Outlook and Opinions, edited by Banerjee A., Jhariya M.K., Prasad R.: Apple Academic Press. 2021. [Google Scholar]
- Sánchez, A. C., Kamau, H. N., Grazioli, F., & Jones, S. K. (2022). Financial profitability of diversified farming systems: A global meta-analysis. Ecological Economics, 201, 107595. doi:10.1016/j.ecolecon.2022.107595 [CrossRef] [Google Scholar]
- Scherr, S. J., Shames, S., & Friedman, R. (2012). From climate-smart agriculture to climate-smart landscapes. Agriculture & Food Security, 1(1). doi:10.1186/2048-7010-1-12 [CrossRef] [Google Scholar]
- Scoones, I. (2022). Livestock, methane, and climate change: The politics of global assessments. WIREs Climate Change, 14(1). doi:10.1002/wcc.790 [Google Scholar]
- Shabbir Alam, M., Duraisamy, P., Bakkar Siddik, A., Murshed, M., Mahmood, H., Palanisamy, M., & Kirikkaleli, D. (2023). The impacts of globalization, renewable energy, and agriculture on CO2 emissions in India: Contextual evidence using a novel composite carbon emission-related atmospheric quality index. Gondwana Research, 119, 384–401. doi:10.1016/j.gr.2023.04.005 [CrossRef] [Google Scholar]
- Shyamsundar, P., Springer, N. P., Tallis, H., Polasky, S., Jat, M. L., Sidhu, H. S., … Somanathan, R. (2019). Fields on fire: Alternatives to crop residue burning in India. Science, 365(6453), 536–538. doi:10.1126/science.aaw4085 [CrossRef] [PubMed] [Google Scholar]
- Srivastava, A. K., & Kesavachandran, C. (2019). Health Effects of Pesticides. https://doi.org/10.1201/9780429058219 [CrossRef] [Google Scholar]
- Sterr, T., & Ott, T. (2004). The Industrial Region as a promising unit for eco-industrial development—reflections, practical experience and establishment of innovative instruments to support industrial ecology. Journal of Cleaner Production, 12(8–10), 947–965. https://doi.org/10.1016/j.jclepro.2004.02.029 [CrossRef] [Google Scholar]
- Šūmane, S., Kunda, I., Knickel, K., Strauss, A., Tisenkopfs, T., des Ios Rios, I., ... & Ashkenazy, A. (2018). Local and farmers’ knowledge matters! How integrating informal and formal knowledge enhances sustainable and resilient agriculture. Journal of Rural Studies, 59, 232241. [Google Scholar]
- UN. (2014). United Nations. Retrieved from https://www.un.org/en/development/desa/news/population/2015-report.html [Google Scholar]
- Vaidya, P., & Bhardwaj, S. K. “Abiotic Stresses in Response to Climate Change in Plants and Their Management”. EnvironmentalContamination and Climate Change: Effect on Plants and Remedial Strategies, edited by Gautam V., Kapoor D., & Bhardwaj R., Nova Science Publisher, June 2, 2021. [Google Scholar]
- VijayaVenkataRaman, S., Iniyan, S., & Goic, R. (2012). A review of climate change, mitigation and adaptation. Renewable and Sustainable Energy Reviews, 16(1), 878–897. https://doi.org/10.1016/j.rser.2011.09.009 [CrossRef] [Google Scholar]
- Walter Schindler. (2022). Retrieved from https://walterschindler.com/sustainableinvestments/sustainable-agriculture/ [Google Scholar]
- Wang, D., Saleh, N. B., Byro, A., Zepp, R., Sahle-Demessie, E., Luxton, T. P., ... & Su, C. (2022). Nano-enabled pesticides for sustainable agriculture and global food security. Nature nanotechnology, 17(4), 347–360. 10.1038/s41565-022-01082-8 [CrossRef] [PubMed] [Google Scholar]
- Warren, P. (2019). The role of climate finance beyond renewables: Demand-side management and carbon capture, usage and storage. Climate Policy, 19(7), 861–877. https://doi.org/10.1080/14693062.2019.1605330 [CrossRef] [Google Scholar]
- Webb, N. P., Marshall, N. A., Stringer, L. C., Reed, M. S., Chappell, A., & Herrick, J. E. (2017). Land degradation and climate change: Building climate resilience in agriculture. Frontiers in Ecology and the Environment, 15(8), 450–459. https://doi.org/10.1002/fee.1530 [CrossRef] [Google Scholar]
- WEF. (2022). Here’s why small-scale farmers need more climate funding. World Economic Forum. https://www.weforum.org/agenda/2022/11/the-vital-role-of-small-scale-farmers-climate-change/ [Google Scholar]
- Wood, S. A., & Bowman, M. (2021). Large-scale farmer-led experiment demonstrates positive impact of cover crops on multiple soil health indicators. Nature Food, 2(2), 97–103. doi:10.1038/s43016-021-00222-y [CrossRef] [PubMed] [Google Scholar]
- World Bank Group. (2016). Retrieved from https://www.worldbank.org/en/topic/agriculture/publication/making-climate-finance-work-in-agriculture [Google Scholar]
- World Business Counsel for Sustainable Development. (2018). Retrieved from https://docs.wbcsd.org/2018/12/The_Business_Case_for_Investing_in_Soil_Health.pdf [Google Scholar]
- Yao, Y., Fan, M., Heckmann, A., & Posadas, C. (2022). Transformative Solutions and Green Finance in the People’s Republic of China and Mongolia. https://doi.org/10.56506/xfvh2542 [CrossRef] [Google Scholar]
- Yoro, K. O., & Daramola, M. O. (2020). CO2 emission sources, Greenhouse Gases, and the global warming effect. Advances in Carbon Capture, 3–28. https://doi.org/10.1016/b978-0-12-819657-1.00001-3 [CrossRef] [Google Scholar]
- Zinina, O. V., & Olentsova, J. A. (2020). Elements of sustainable development of Agricultural Enterprises. IOP Conference Series: Earth and Environmental Science, 421(2), 022003. https://doi.org/10.1088/1755-1315/421/2/022003 [CrossRef] [Google Scholar]
- Zwane, E. M. (2019). Impact of climate change on primary agriculture, water sources and food security in Western Cape, South Africa. Jàmbá Journal of Disaster Risk Studies, 11(1). https://doi.org/10.4102/jamba.v11i1.562 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.