Open Access
Issue
E3S Web Conf.
Volume 453, 2023
International Conference on Sustainable Development Goals (ICSDG 2023)
Article Number 01058
Number of page(s) 11
DOI https://doi.org/10.1051/e3sconf/202345301058
Published online 30 November 2023
  1. Leger, J. M., Haines, J., Schmidt, M., Petitet, J. P., Pereira, A. S., & Da Jornada, J. A. H. (1996). Discovery of hardest known oxide. Nature, 383(6599), 401-401. [CrossRef] [Google Scholar]
  2. Jones, I. W., & Miles, L. J. (1971). Production of β-Al2O3 electrolyte. In Proc. Br. Ceram. Soc. (Vol. 19, pp. 161-178). [Google Scholar]
  3. Galasso, F. S. (2013). Structure and properties of inorganic solids: international series of monographs in solid state physics (Vol. 7). Elsevier. [Google Scholar]
  4. Bragg, W. H. (1915). The structure of magnetite and the spinels. Nature, 95(2386), 561-561. [CrossRef] [Google Scholar]
  5. Nishikawa, S. (1915). Structure of some crystals of spinel group. Proceedings of the Tokyo MathematicoPhysical Society. 2nd Series, 8(7), 199–209_1. [Google Scholar]
  6. Rafiq, M. A., Javed, A., Rasul, M. N., Nadeem, M., Iqbal, F., & Hussain, A. (2021). Structural, electronic, magnetic and optical properties of AB2O4 (A= Ge, Co and B= Ga, Co) spinel oxides. Materials Chemistry and Physics, 257, 123794. [CrossRef] [Google Scholar]
  7. Harrabi, D., Hcini, S., Dhahri, J., Wederni, M. A., Alshehri, A. H., Mallah, A., ... & Bouazizi, M. L. (2023). Study of structural and optical properties of Cu–Cr substituted Mg–Co spinel ferrites for optoelectronic applications. Journal of Inorganic and Organometallic Polymers and Materials, 33(1), 47-60. [CrossRef] [Google Scholar]
  8. Arul, K. T., Manikandan, E., Murmu, P. P., Kennedy, J., & Henini, M. (2017). Enhanced magnetic properties of polymer-magnetic nanostructures synthesized by ultrasonication. Journal of Alloys and Compounds, 720, 395-400. [CrossRef] [Google Scholar]
  9. Dasgupta, S., Das, B., Li, Q., Wang, D., Baby, T. T., Indris, S., ... & Hahn, H. (2016). Toward on‐and‐off magnetism: reversible electrochemistry to control magnetic phase transitions in spinel ferrites. Advanced Functional Materials, 26(41), 7507-7515. [CrossRef] [Google Scholar]
  10. Qin, H., He, Y., Xu, P., Huang, D., Wang, Z., Wang, H., ... & Wang, C. (2021). Spinel ferrites (MFe2O4): Synthesis, improvement and catalytic application in environment and energy field. Advances in Colloid and Interface Science, 294, 102486. [CrossRef] [PubMed] [Google Scholar]
  11. Sugimoto, M. (1999). The past, present, and future of ferrites. Journal of the American Ceramic Society, 82(2), 269-280. [CrossRef] [Google Scholar]
  12. Liang, R., Tian, R., Liu, Z., Yan, D., & Wei, M. (2014). Preparation of monodisperse ferrite nanocrystals with tunable morphology and magnetic properties. Chemistry–An Asian Journal, 9(4), 1161-1167. [CrossRef] [PubMed] [Google Scholar]
  13. Chattopadhyay, S., Bandyopadhyay, A., & Nath, M. (2022). Physics of ferrite ceramics. In Ceramic Science and Engineering (pp. 165-185). Elsevier. [CrossRef] [Google Scholar]
  14. Hossain, A., Sarker, M. S. I., Khan, M. K. R., & Rahman, M. M. (2020). Spin effect on electronic, magnetic and optical properties of spinel CoFe2O4: A DFT study. Materials Science and Engineering: B, 253, 114496. [CrossRef] [Google Scholar]
  15. Hill, R. J., Craig, J. R., & Gibbs, G. V. (1979). Systematics of the spinel structure type. Physics and chemistry of minerals, 4(4), 317-339. [CrossRef] [Google Scholar]
  16. Szotek, Z., Temmerman, W. M., Ködderitzsch, D., Svane, A., Petit, L., & Winter, H. (2006). Electronic structures of normal and inverse spinel ferrites from first principles. Physical Review B, 74(17), 174431. [Google Scholar]
  17. Wyckoff, R.W.G. (1964) Crystal Structures, Vol. 2. 2nd Edition, John Wiley & Sons, Inc., New York, London, Sydney. [Google Scholar]
  18. Huang, Y. L., Fan, W. B., Hou, Y. H., Guo, K. X., Ouyang, Y. F., & Liu, Z. W. (2017). Effects of intrinsic defects on the electronic structure and magnetic properties of CoFe2O4: A first-principles study. Journal of Magnetism and Magnetic Materials, 429, 263-269. [CrossRef] [Google Scholar]
  19. Kugimiya, K. (1968). The Influence of Crystal Radii and Electronegativities on the Crystallization of AB204 Compounds (Doctoral dissertation, University of Texas at Austin). [Google Scholar]
  20. Verwey, E. J. W., & Heilmann, E. L. (1947). Physical properties and cation arrangement of oxides with spinel structures I. Cation arrangement in spinels. The Journal of Chemical Physics, 15(4), 174-180. [Google Scholar]
  21. Krupička, S., & Novák, P. (1982). Oxide spinels. Handbook of ferromagnetic materials, 3, 189-304. [CrossRef] [Google Scholar]
  22. Sickafus, K. E., Wills, J. M., & Grimes, N. W. (1999). Structure of spinel. Journal of the American Ceramic Society, 82(12), 3279-3292. [CrossRef] [Google Scholar]
  23. Walsh, A., Wei, S. H., Yan, Y., Al-Jassim, M. M., Turner, J. A., Woodhouse, M., & Parkinson, B. A. (2007). Structural, magnetic, and electronic properties of the Co-Fe-Al oxide spinel system: Density-functional theory calculations. Physical review B, 76(16), 165119. [CrossRef] [Google Scholar]
  24. Dunitz, J. D., & Orgel, L. E. (1957). Electronic properties of transition-metal oxides—I: Distortions from cubic symmetry. Journal of Physics and Chemistry of Solids, 3(1-2), 20-29. [CrossRef] [Google Scholar]
  25. Bersuker I.B. (1996). Electronic structure and properties of transition metal compounds : introduction to the theory. Wiley. [Google Scholar]
  26. Zehani, K., Bez, R., Boutahar, A., Hlil, E. K., Lassri, H., Moscovici, J., ... & Bessais, L. (2014). Structural, magnetic, and electronic properties of high moment FeCo nanoparticles. Journal of alloys and compounds, 591, 58-64. [CrossRef] [Google Scholar]
  27. Kittel, C. (2005). Introduction to solid state physics. John Wiley & sons, inc. [Google Scholar]
  28. Jonker, G. H. (1959). Analysis of the semiconducting properties of cobalt ferrite. Journal of Physics and Chemistry of Solids, 9(2), 165-175. [CrossRef] [Google Scholar]
  29. Fritsch, D., & Ederer, C. (2010). Epitaxial strain effects in the spinel ferrites CoFe 2 O 4 and NiFe 2 O 4 from first principles. Physical review B, 82(10), 104117. [CrossRef] [Google Scholar]
  30. Szotek, Z., Temmerman, W. M., Ködderitzsch, D., Svane, A., Petit, L., & Winter, H. (2006). Electronic structures of normal and inverse spinel ferrites from first principles. Physical Review B, 74(17), 174431. [CrossRef] [Google Scholar]
  31. Meng, Y., Shi, W., Lu, C., Yang, S., Yang, Q., & Deng, J. G. (2019, July). First-Principles Study of Structural, Elastic, Electronic and Optical Properties of Zinc Ferrite Spinel. In IOP Conference Series: Materials Science and Engineering (Vol. 569, No. 2, p. 022016). IOP Publishing. [CrossRef] [Google Scholar]
  32. Yao, J., Li, X., Li, Y., & Le, S. (2013). Density functional theory investigations on the structure and electronic properties of normal spinel ZnFe2O4. Integrated Ferroelectrics, 145(1), 17-23. [CrossRef] [Google Scholar]
  33. Bouferrache, K., Charifi, Z., Baaziz, H., Alsaad, A. M., & Telfah, A. (2020). Electronic structure, magnetic and optic properties of spinel compound NiFe2O4. Semiconductor Science and Technology, 35(9), 095013. [CrossRef] [Google Scholar]
  34. Wangchhuk, J., & Meher, S. R. (2022). Structural, electronic and magnetic properties of inverse spinel NiFe2O4: DFT+ U investigation. Physics Letters A, 443, 128202. [CrossRef] [Google Scholar]
  35. Ugendar, K., Samanta, S., Rayaprol, S., Siruguri, V., Markandeyulu, G., & Nanda, B. R. K. (2017). Effect of frustrated exchange interactions and spin-half-impurity on the electronic structure of strongly correlated NiFe 2 O 4. Physical Review B, 96(3), 035138. [CrossRef] [Google Scholar]
  36. Yao, H., Ning, X., Zhao, H., Hao, A., & Ismail, M. (2021). Effect of Gd-doping on structural, optical, and magnetic properties of NiFe2O4 as-prepared thin films via facile sol–gel approach. ACS omega, 6(9), 63056311. [Google Scholar]
  37. Sun, Q. C., Sims, H., Mazumdar, D., Ma, J. X., Holinsworth, B. S., O’neal, K. R., ... & Musfeldt, J. L. (2012). Optical band gap hierarchy in a magnetic oxide: electronic structure of NiFe 2 O 4. Physical Review B, 86(20), 205106. [CrossRef] [Google Scholar]
  38. Wickersheim, K. A., & Lefever, R. A. (1960). Optical properties of synthetic spinel. JOSA, 50(8), 831-832. [Google Scholar]
  39. Magnusson, R., & Wang, S. S. (1992). New principle for optical filters. Applied physics letters, 61(9), 10221024. [CrossRef] [Google Scholar]
  40. Weber, M. J. (2002). Handbook of Optical Materials CRC Press. [CrossRef] [Google Scholar]
  41. Wooten, F. (1972). Optical properties of solids. Academic Press. [Google Scholar]
  42. Dileep, K., Loukya, B., Pachauri, N., Gupta, A., & Datta, R. (2014). Probing optical band gaps at the nanoscale in NiFe2O4 and CoFe2O4 epitaxial films by high resolution electron energy loss spectroscopy. Journal of Applied Physics, 116(10). [CrossRef] [Google Scholar]
  43. Noreen, S., Hussain, A., Tahir, M. B., Ziya, A. B., Rehman, J. U., Usman, M., ... & Akhtar, S. (2022). Structural, mechanical, thermodynamic, electronic, magnetic and optical properties of ZnFe2O4 ferrite: A DFT study. Optical Materials, 133, 112930. [CrossRef] [Google Scholar]
  44. Turner, J. A. (2004). Sustainable hydrogen production. Science, 305(5686), 972-974. [CrossRef] [PubMed] [Google Scholar]
  45. Fujishima, A., & Honda, K. (1971). Electrochemical evidence for the mechanism of the primary stage of photosynthesis. Bulletin of the chemical society of Japan, 44(4), 1148-1150. [CrossRef] [Google Scholar]
  46. Qin, H., He, Y., Xu, P., Huang, D., Wang, Z., Wang, H., ... & Wang, C. (2021). Spinel ferrites (MFe2O4): Synthesis, improvement and catalytic application in environment and energy field. Advances in Colloid and Interface Science, 294, 102486. [CrossRef] [PubMed] [Google Scholar]
  47. Qin, H., He, Y., Xu, P., Huang, D., Wang, Z., Wang, H., ... & Wang, C. (2021). Spinel ferrites (MFe2O4): Synthesis, improvement and catalytic application in environment and energy field. Advances in Colloid and Interface Science, 294, 102486. [CrossRef] [PubMed] [Google Scholar]
  48. Domínguez-Arvizu, J. L., Jiménez-Miramontes, J. A., Salinas-Gutiérrez, J. M., Meléndez-Zaragoza, M. J., López-Ortiz, A., & Collins-Martínez, V. (2017). Optical properties determination of NiFe2O4 nanoparticles and their photocatalytic evaluation towards hydrogen production. International journal of hydrogen energy, 42(51), 30242-30248. [CrossRef] [Google Scholar]
  49. Feng, Z., Wang, P., Cheng, Y., Mo, Y., Luo, X., Liu, P., ... & Liu, X. (2023). Recent progress on NiFe2O4 spinels as electrocatalysts for the oxygen evolution reaction. Journal of Electroanalytical Chemistry, 946, 117703. [CrossRef] [Google Scholar]
  50. Valenzuela, R. (2012). Novel applications of ferrites. Physics Research International, 2012. [Google Scholar]
  51. Yang, C., Liu, F., Ren, T., Liu, L., Feng, H., Wang, A. Z., & Long, H. (2006). Fully integrated ferrite-based inductors for RF ICs. Sensors and Actuators A: Physical, 130, 365-370. [CrossRef] [Google Scholar]
  52. Fetisov, Y. K., Bush, A. A., Kamentsev, K. E., Ostashchenko, A. Y., & Srinivasan, G. (2006). Ferritepiezoelectric multilayers for magnetic field sensors. IEEE Sensors Journal, 6(4), 935-938. [CrossRef] [Google Scholar]
  53. Mendonça, M. H., Godinho, M. I., Catarino, M. A., da Silva Pereira, M. I., & Costa, F. M. (2002). Preparation and characterisation of spinel oxide ferrites suitable for oxygen evolution anodes. Solid state sciences, 4(2), 175-182. [CrossRef] [Google Scholar]
  54. Amiri, M., Salavati-Niasari, M., & Akbari, A. (2019). Magnetic nanocarriers: evolution of spinel ferrites for medical applications. Advances in colloid and interface science, 265, 29-44. [CrossRef] [PubMed] [Google Scholar]
  55. Kefeni, K. K., Msagati, T. A., Nkambule, T. T., & Mamba, B. B. (2020). Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity. Materials Science and Engineering: C, 107, 110314. [CrossRef] [Google Scholar]
  56. Srinivasan, S. Y., Paknikar, K. M., Bodas, D., & Gajbhiye, V. (2018). Applications of cobalt ferrite nanoparticles in biomedical nanotechnology. Nanomedicine, 13(10), 1221-1238. [CrossRef] [PubMed] [Google Scholar]
  57. Ahmad, T., Rhee, I., Hong, S., Chang, Y., & Lee, J. (2011). Ni-Fe2O4 nanoparticles as contrast agents for magnetic resonance imaging. Journal of nanoscience and nanotechnology, 11(7), 5645-5650. [CrossRef] [PubMed] [Google Scholar]
  58. Sharifi, I., Shokrollahi, H., & Amiri, S. (2012). Ferrite-based magnetic nanofluids used in hyperthermia applications. Journal of magnetism and magnetic materials, 324(6), 903-915. [CrossRef] [Google Scholar]
  59. Kour, S., Mukherjee, R., & Kumar, N. (2022). Synthesis of Ni0. 5Co0. 5Fe2O4 Ferrite and Effect of Annealing Temperature on the Structural, Morphological and Dielectric Analysis. ECS Transactions, 107(1), 19791. [CrossRef] [Google Scholar]
  60. Chandekar, K. V., Yadav, S. P., Chinke, S., & Shkir, M. (2023). Impact of Co-doped NiFe2O4 (CoxNi1− xFe2O4) nanostructures prepared by co-precipitation route on the structural, morphological, surface, and magnetic properties. Journal of Alloys and Compounds, 966, 171556. [CrossRef] [Google Scholar]
  61. Kalia, S., Kumar, A., Munjal, N., & Prasad, N. (2021, July). Synthesis of ferrites using various parts of plants: a mini review. In Journal of Physics: Conference Series (Vol. 1964, No. 3, p. 032003). IOP Publishing. [CrossRef] [Google Scholar]
  62. Kalia, S., Kumar, A., Sharma, S., & Prasad, N. (2022, May). Properties, applications, and synthesis of first transition series substituted cobalt ferrite: A mini review. In Journal of Physics: Conference Series (Vol. 2267, No. 1, p. 012133). IOP Publishing. [CrossRef] [Google Scholar]
  63. Aman, S., & Ahmad, N. (2023). Study of rare-earth metal (Dy)-substituted barium-based spinel ferrites for microwave applications. JOM, 1-9. [Google Scholar]
  64. Yadav, R. S., & Kuřitka, I. (2023). Recent developments on nanocomposites based on spinel ferrite and carbon nanotubes for applications in electromagnetic interference shielding and microwave absorption. Critical Reviews in Solid State and Materials Sciences, 1-37. [CrossRef] [Google Scholar]
  65. Deka, S. (2023). Nanostructured mixed transition metal oxide spinels for supercapacitor applications. Dalton Transactions, 52(4), 839-856. [CrossRef] [PubMed] [Google Scholar]
  66. Poonguzhali, R. V., Kumar, E. R., Srinivas, C., Alshareef, M., Aljohani, M. M., Keshk, A. A., ... & Arunadevi, N. (2023). Natural lemon extract assisted green synthesis of spinel Co3O4 nanoparticles for LPG gas sensor application. Sensors and Actuators B: Chemical, 377, 133036. [CrossRef] [Google Scholar]
  67. Guo, P. Y., Pan, J. C., Wei, P. Y., Shao, Y., Qin, C., Wang, K., ... & Zhang, J. F. (2023). The formation of spinel CuxMn3-xO4 at 750° C in the designed CuMn layers for solid oxide fuel cell applications. Surface and Coatings Technology, 464, 129467. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.