Open Access
Issue
E3S Web Conf.
Volume 455, 2023
First International Conference on Green Energy, Environmental Engineering and Sustainable Technologies 2023 (ICGEST 2023)
Article Number 02018
Number of page(s) 12
Section Renewable & Sustainable Energy Technology
DOI https://doi.org/10.1051/e3sconf/202345502018
Published online 05 December 2023
  1. K. Lin, Y. Zhao, J.H. Kuo, Deng, H., F. Cui, Z. Zhang, & T. Wang, Toward smarter management and recovery of municipal solid waste: A critical review on deep learning approaches. Journal of Cleaner Production, 130943 (2022) [CrossRef] [Google Scholar]
  2. K. Arun and S. Babu, “CSR Communication Strategy of Indian Organizations,” in 10th Annual International Conference on Industrial Engineering and Operations Management, IEOM Society International (2020). [Google Scholar]
  3. C.G. Cheah, W.Y. Chia, S.F. Lai, K.W. Chew, S.R. Chia, & P.L. Show, Innovation designs of industry 4.0 based solid waste management: Machinery and digital circular economy. Environmental Research, 213, 113619 (2022) [CrossRef] [PubMed] [Google Scholar]
  4. A. Lakhouit, M. Shaban, A. Alatawi, S.Y. Abbas, E. Asiri, T. Al Juhni, & M. Elsawy. Machine-learning approaches in geo-environmental engineering: Exploring smart solid waste management. Journal of Environmental Management, 330, 117174 (2023) [CrossRef] [PubMed] [Google Scholar]
  5. L. Andeobu, S. Wibowo, & S. Grandhi. Artificial intelligence applications for sustainable solid waste management practices in Australia: A systematic review. Science of The Total Environment, 155389 (2022) [CrossRef] [Google Scholar]
  6. L. Ihsanullah, G. Alam, A. Jamal, & F. Shaik. Recent advances in applications of artificial intelligence in solid waste management: A review. Chemosphere, 136631 (2022) [CrossRef] [PubMed] [Google Scholar]
  7. H.N. Guo, S.B. Wu, Y.J. Tian, J. Zhang, & H.T. Liu. Application of machine learning methods for the prediction of organic solid waste treatment and recycling processes: A review. Bioresource technology, 319, 124114 (2021) [CrossRef] [PubMed] [Google Scholar]
  8. C.E. Kontokosta, B. Hong, N.E. Johnson, & D. Starobin. Using machine learning and small area estimation to predict building-level municipal solid waste generation in cities. Computers, Environment and Urban Systems, 70, 151-162 (2018) [CrossRef] [Google Scholar]
  9. G. Prasad, A. S. Reshma, M. V. Ramesh, “Assessment of drinking water quality on public health at Alappuzha district, southern Kerala, India,” Materials Today: Proceedings, vol. 46, pp. 4435-4440, DOI: 10.1016/j.matpr.2021.05.106 (2021). [CrossRef] [Google Scholar]
  10. V. K. Damodaran, G. Prasad, V. T. Joseph, B. Ambat, “Review of Strategy, Framework and Technological Options for Municipal Solid Waste Management,” in Kerala Environment Congress 2010, pp. 1-3 (2010). [Google Scholar]
  11. M. Kannangara, R. Dua, L. Ahmadi, & F. Bensebaa. Modeling and prediction of regional municipal solid waste generation and diversion in Canada using machine learning approaches. Waste management, 74, 3-15 (2018) [CrossRef] [Google Scholar]
  12. N. Taggio, A. Aiello, G. Ceriola, M. Kremezi, V. Kristollari, P. Kolokoussis & E. Barbone. A Combination of machine learning algorithms for marine plastic litter detection exploiting hyperspectral PRISMA data. Remote Sensing, 14(15), 3606 (2022) [CrossRef] [Google Scholar]
  13. A. Onyanta. Cities, municipal solid waste management, and climate change: Perspectives from the South. Geography Compass, 10(12), 499-513 (2016). [CrossRef] [Google Scholar]
  14. K. Arun, “Geospatial approach for wind farm site selection-A Kerala scenario,” 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy), Kollam, pp. 1-5, DOI: 10.1109/TAPENERGY.2017.8398491 (2017). [Google Scholar]
  15. K. Arun and S. Babu, “Are Corporates Renouncing Shareholder Capitalism and Moving Towards Stakeholder Capitalism,” in 10th Annual International Conference on Industrial Engineering and Operations Management, IEOM Society International (2020). [Google Scholar]
  16. G. Prasad, R. Rajesh, K. Arun, “Land Use Pattern as an Indicator of Sustainability: A Case Study,” in 10th Annual International Conference on Industrial Engineering and Operations Management, IEOM Society International, pp. 2169-8767, ISSN: 21698767 (2020). [Google Scholar]
  17. S. Pattnaik, & M.V. Reddy. Assessment of municipal solid waste management in Puducherry (Pondicherry), India. Resources, Conservation and Recycling, 54(8), 512-520 (2010) [CrossRef] [Google Scholar]
  18. E. Fagnani, & J.R. Guimarães. Waste management plan for higher education institutions in developing countries: The Continuous Improvement Cycle model. Journal of Cleaner Production, 147, 108-118 (2017) [CrossRef] [Google Scholar]
  19. G. Prasad, H. Marnane, M. V. Ramesh, “Geogenic and anthropogenic contamination of groundwater in a fragile eco-friendly region of southern Kerala, India,” Agronomy Research, vol. 20, no. 1, pp. 1-14, 2022, DOI: 10.15159/AR.22.010. [Google Scholar]
  20. M.A. Al Mamun, M.A. Hannan, A. Hussain, & H. Basri (2014). Integrated sensing systems and algorithms for solid waste bin state management automation. IEEE Sensors journal, 15(1), 561-567 (2014) [Google Scholar]
  21. G. Prasad, M. V. Ramesh, “Spatio-temporal analysis of land use/land cover changes in an ecologically fragile area—Alappuzha District, Southern Kerala, India,” Natural Resources Research, vol. 28, no. 1, pp. 31-42, 2019, DOI: 10.1007/s11053-018-9419-y. [CrossRef] [Google Scholar]
  22. W. Xia, Y. Jiang, X. Chen, & R. Zhao. Application of machine learning algorithms in municipal solid waste management: A mini review. Waste Management & Research, 40(6), 609-624 (2022) [CrossRef] [PubMed] [Google Scholar]
  23. S. Ding, W. Huang, W. Xu, Y. Wu, Y. Zhao, P. Fang & L. Lou. Improving kitchen waste composting maturity by optimizing the processing parameters based on machine learning model. Bioresource Technology, 360, 127606 (2022). [CrossRef] [PubMed] [Google Scholar]
  24. X. Ding, C. Feng, P. Yu, K. Li, & X. Chen. Gradient boosting decision tree in the prediction of NOx emission of waste incineration. Energy, 264, 126174 (2023). [CrossRef] [Google Scholar]
  25. Srivastava, V., Ismail, S. A., Singh, P., & Singh, R. P. (2015). Urban solid waste management in the developing world with emphasis on India: challenges and opportunities. Reviews in Environmental Science andBio/Technology, 14, 317–337. [CrossRef] [Google Scholar]
  26. Muniruzzaman, M., Kauppila, P. M., & Karlsson, T. (2018). Water quality prediction of mining waste facilities based on predictive models. Geol Surv Finl Open File Res Rep, 16, 67. [Google Scholar]
  27. Bui, H. M., Bui, H. N., Le, T. M., & Karri, R. R. (2021). Application of artificial neural networks on water and wastewater prediction: A review. Soft Computing Techniques in Solid Waste and Wastewater Management, 95-109. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.