Open Access
Issue
E3S Web Conf.
Volume 455, 2023
First International Conference on Green Energy, Environmental Engineering and Sustainable Technologies 2023 (ICGEST 2023)
Article Number 03024
Number of page(s) 11
Section Sustainable Technology in Construction
DOI https://doi.org/10.1051/e3sconf/202345503024
Published online 05 December 2023
  1. Nguyen, H.T., Jeon, J., Ikeda, T. et al. Polymeric molecular coating for oxidation resistance property of copper surface. Polym. Bull. 76, 2311–2319 (2019). https://doi.org/10.1007/s00289-018-2501-0. [CrossRef] [Google Scholar]
  2. Haichuan L., Rui B., Ruofei M., Jiachen L., Youliang N., Jianhong Y., Preparation and properties of copper matrix composites synergistically strengthened by Al2O3 and CPD, Diamond and Related Materials, Vol. 124, 2022, 108916, ISSN 0925-9635, https://doi.org/10.1016/j.diamond.2022.108916. [Google Scholar]
  3. Jipeng C., Jing Z., Fengcai L., Xiaoxiao Z., Rongkun J., Yucai L., Fangfang W., Qi L., Weibin B., Yanlian X., Polymerized tung oil toughened urushiol-based benzoxazine copper polymer coatings with excellent antifouling performances, Progress in Organic Coatings, Vol. 177, 2023, 107411, ISSN 0300-9440, https://doi.org/10.1016/j.porgcoat.2023.107411. [CrossRef] [Google Scholar]
  4. Meihan L., Xiaoyi Y., Yue X., Zhiqian X., Yu L., Puyu Z., Yunxue Z., Nannan L., Shengyong Z., Zhiquan Z., Jiaming S., A novel handy polymerized copper porphyrin sensor detects bases simultaneously, Journal of Electroanalytical Chemistry, Vol. 931, 2023, 117171, ISSN 1572-6657, https://doi.org/10.1016/jjelechem.2023.117171. [CrossRef] [Google Scholar]
  5. Xu F., Bao, D., Cui, Y. et al. Copper nanoparticle-deposited graphite sheets for highly thermally conductive polymer composites with reduced interfacial thermal resistance. Adv Compos Hybrid Mater 5, 2235–2246 (2022). https://doi.org/10.1007/s42114-021-00367-1. [CrossRef] [Google Scholar]
  6. Islam, M.D., Liu, S., Choi, D. et al. Physics-based Computational Method Predicting the Dielectric Properties of Polymer Nanocomposites. Appl Compos Mater 29, 1579–1595 (2022). https://doi.org/10.1007/s10443-022-10026-3. [CrossRef] [Google Scholar]
  7. Xia X., Weng, G.J., Zhang, J. et al. The effect of temperature and graphene concentration on the electrical conductivity and dielectric permittivity of graphene-polymer nanocomposites. Acta Mech 231, 1305–1320 (2020). https://doi.org/10.1007/s00707-019-02588-4. [CrossRef] [Google Scholar]
  8. Zhang, Z., Xiang, D., Wu, Y. et al. Effect of Carbon Black on the Strain Sensing Property of 3D Printed Conductive Polymer Composites. Appl Compos Mater 29, 1235–1248 (2022). https://doi.org/10.1007/s10443-022-10017-4 [CrossRef] [Google Scholar]
  9. Noor Hassan A., Suha K. Shihab, Muzher Taha M., Mechanical and physical characteristics of hybrid particles/fibers-polymer composites: A review, Materials Today: Proceedings, Vol. 62, Part 1, 2022, 178–183, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2022.02.614. [Google Scholar]
  10. Swagatika M., Punyapriya M., Synthesis and characterization of CCTO0.5-BT0.5/epoxy hybrid ceramic polymer composite for electronic applications, Materials Today: Proceedings, Vol. 67, Part 2, 2022, 372–376, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2022.07.244. [CrossRef] [Google Scholar]
  11. Megavannan M., M. Thiyagu, Pradeep Kumar K., Review of the effects of low-velocity impact events on advanced fiber-reinforced polymer composite structures, Materials Today: Proceedings, 2023, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2023.04.255. [Google Scholar]
  12. Deepak Kumar P., Ahmed Arabi H., David N., Nikolaos T., Mitchell L. Rencheck, Vipin K., Peeyush N., Chase B. Joslin, Patrick B., Sangram Laxman T., Patrick M., Vlastimil K., Seokpum K., A novel additive manufacturing compression overmolding process for hybrid metal polymer composite structures, Additive Manufacturing Letters, Vol. 5, 2023, 100128, ISSN 2772-3690, https://doi.org/10.1016/j.addlet.2023.100128. [CrossRef] [Google Scholar]
  13. M.D. Kiran, H.K. Govindaraju, B.R. Lokesh Y., Nithin K., Effect of various parameters on fracture toughness of polymer composites: A review, Materials Today: Proceedings, 2023, Vol. 83, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2023.03.129. [Google Scholar]
  14. Manjeet S., V.G. Abhijitha, B.R.K. Nanda, Deval P., Satyapriya N., Sharmistha A., Avijit K., Prasant K.N., Subash Chandra S., Excellent photo actuation in crystal- polymer composite by transfer of mechanical energy, Chemical Engineering Journal, Vol. 464, 2023, 142665, ISSN 1385-8947, https://doi.org/10.1016/j.cej.2023.142665. [CrossRef] [Google Scholar]
  15. Fushi L., Yunbao G., Chunyu Z., Jing J., Xiangling J., Yue Z., Xuequan Z., Wei J., Design of high impact thermal plastic polymer composites with balanced toughness and rigidity: Effect of matrix polymer molecular weight, Polymer, Vol. 208, 2020, 122957, ISSN 0032-3861, https://doi.org/10.1016/j.polymer.2020.122957. [Google Scholar]
  16. Yongqiang G., Kunpeng R., Guangsheng W., Junwei G., Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption, Science Bulletin, 2023, Vol. 68, ISSN 2095-9273, https://doi.org/10.1016/j.scib.2023.04.036. [Google Scholar]
  17. Boiko, Y.M. Correction to: Statistical strength of a self-bonded incompatible polymerpolymer interface. Polym. Bull. 78, 6611–6612 (2021). https://doi.org/10.1007/s00289-020-03503-x [CrossRef] [Google Scholar]
  18. Athanasios G., Jack R. McGhee, Tom W., Daisy O., Esha M., Will W., Bala V., Ian M. Reaney, John Yiannis C. Vardaxoglou, Daniel S. Engstrøm, Synthesis and dielectric characterisation of a low loss BaSrTiO3/ABS ceramic/polymer composite for fused filament fabrication additive manufacturing, Additive Manufacturing, Vol. 55, 2022, 102844, ISSN 2214-8604, https://doi.org/10.1016/j.addma.2022.102844. [CrossRef] [Google Scholar]
  19. Elssa G., Abhisha M., Poornima Vijayan P., Henri V., Soney C. G., Saithalavi A., Polydopamine modified polymeric carbon nitride nanosheet based AB S nanocomposites for better thermal, frictional and mechanical performance, Nano-Structures & NanoObjects, Vol. 35, 2023, 100987, ISSN 2352-507X, https://doi.org/10.1016/j.nanoso.2023.100987. [CrossRef] [Google Scholar]
  20. Cuilian D., Shiqi Y., Xinxuan T., Zijin L., Hang L., Yan Z., Dou Z., Sheng C., The design and preparation of high-performance ABS-based dielectric composites via introducing core-shell polar polymers BaTiO3 nanoparticles, Composites Part A: Applied Science and Manufacturing, Vol. 163, 2022, 107214, IsSn 1359-835X, https://doi.org/10.1016/j.compositesa.2022.107214. [CrossRef] [Google Scholar]
  21. Jani P., Carlos B., Hany A., Laura S., Martin S., Compatibilized PC/ABS blends from solvent recycled PC and ABS polymers from electronic equipment waste, Polymer Testing, Vol. 120, 2023, 107969, ISSN 0142-9418, https://doi.org/10.1016/j.polymertesting.2023.107969. [CrossRef] [Google Scholar]
  22. Ruslan M., Ran T., Gilles L., Greener electrochemical plating of ABS polymer with unprecedented adhesion via hierarchical micro-nanotexturing, Journal of Materials Research and Technology, Vol. 24, 2023, 3575–3587, ISSN 2238-7854, https://doi.org/10.1016/jjmrt.2023.04.001. [CrossRef] [Google Scholar]
  23. R. Venkatesh, J. Jerold John B., K. Amudhan, V. Anbumalar, R. Prabhakaran, R. Thiyanesh S., Experimental investigation of mechanical properties on CF reinforced PLA, ABS and Nylon composite part, Materials Today: Proceedings, Vol. 76, Part 4, 2023, 647–653, ISSN 2214-7853, https://doi.org/10.1016Zj.matpr.2022.12.091. [CrossRef] [Google Scholar]
  24. Jacek A., Anna D., Adam P., Aminul I., Marek S., Biocarbon-based sustainable reinforcing system for technical polymers. The structure-properties correlation between polycarbonate (PC) and polybutylene terephthalate (PBT)-based blends containing acrylonitrile-butadiene-styrene (ABS), Sustainable Materials and Technologies, Vol. 36, 2023, ISSN 2214-9937, https://doi.org/10.1016/j.susmat.2023.e00612. [Google Scholar]
  25. Hai F., Yu’an B., Shuqian D., Hongfu Z., Wei G., Structure design of multi-layered ABS/CNTs composite foams for EMI shielding application with low reflection and high absorption characteristics, Applied Surface Science, Vol. 624, 2023, 157168, ISSN 0169-4332, https://doi.org/10.1016/j.apsusc.2023.157168. [CrossRef] [Google Scholar]
  26. Ramanjaneyulu, B., Venkatachalapathi, N. & Prasanthi, G. Thermal and Mechanical Properties of PLA/ABS/TCS Polymer Blend Composites. J. Inst. Eng. India Ser. C 102, 799–806 (2021). https://doi.org/10.1007/s40032-021-00687-7 [CrossRef] [Google Scholar]
  27. Merve U., Melih Soner C., Evaluation of the bio-based materials utilization in shape memory polymer composites production, European Polymer Journal, Vol. 195, 2023, 112196, ISSN 0014-3057, https://doi.org/10.1016Zj.eurpolymj.2023.112196. [CrossRef] [Google Scholar]
  28. Wong, Y., Kong, J., Widjaja, L.K. et al. Biomedical applications of shape-memory polymers: how practically useful are they?. Sci. China Chem. 57, 476–489 (2014). https://doi.org/10.1007/s11426-013-5061-z [CrossRef] [Google Scholar]
  29. Bhavya A., Nitin J., Bhaskar Chandra K., Lavish Kumar S., Pavitar Parkash S., Drilling process parameter optimization of natural fibre reinforced polymer matrix composites, Materials Today: Proceedings, 2023, Vol. 83, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2023.02.364. [Google Scholar]
  30. Khaled A. Eldressi, Hafiz M A., Walid Omar A. Salem, Naser S. Sanoussi, Review of recent developments in polymer matrix composites with particulate reinforcements, Reference Module in Materials Science and Materials Engineering, Elsevier, 2023, ISBN 9780128035818, https://doi.org/10.1016/B978-0-323-96020-5.00067-4. [Google Scholar]
  31. Gulia, V., & Nargundkar, A. (2022). Experimental investigations of abrasive water jet machining on hybrid composites. Materials Today: Proceedings, 65, 3191–3196. [CrossRef] [Google Scholar]
  32. Nargundkar, A., Gulia, V., & Khan, A. (2023). Nanoabrasives-Assisted Abrasive Water Jet Machining of Bio-Composites—An Experimental and Optimization Approach. Journal of Advanced Manufacturing Systems, 1–24. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.