Open Access
Issue
E3S Web Conf.
Volume 455, 2023
First International Conference on Green Energy, Environmental Engineering and Sustainable Technologies 2023 (ICGEST 2023)
Article Number 03026
Number of page(s) 8
Section Sustainable Technology in Construction
DOI https://doi.org/10.1051/e3sconf/202345503026
Published online 05 December 2023
  1. H. Ş. Arel and E. Aydin, “Use of industrial and agricultural wastes in construction concrete,” ACI Mater J, vol. 115, no. 1, 2018, DOI: 10.14359/51700991. [Google Scholar]
  2. O. A. Adetayo and O. Jubril, “Effect of Ripe and Unripe Plantain Peel Ash on Concrete Workability and Compressive Strength,” FUOYE Journal of Engineering and Technology, vol. 4, no. 1, 2019, DOI: 10.46792/fuoyejet.v4i1.318. [CrossRef] [Google Scholar]
  3. E. R. Teixeira, A. Camões, and F. G. Branco, “Synergetic effect of biomass fly ash on improvement of high-volume coal fly ash concrete properties,” Constr Build Mater, vol. 314, 2022, DOI: 10.1016/j.conbuildmat.2021.125680. [CrossRef] [Google Scholar]
  4. M. Amran et al., “Design efficiency, characteristics, and utilization of reinforced foamed concrete: A review,” Crystals, vol. 10, no. 10. 2020. DOI: 10.3390/cryst10100948. [CrossRef] [Google Scholar]
  5. M. Amran et al., “Fibre-reinforced foamed concretes: A review,” Materials, vol. 13, no. 19. 2020. DOI: 10.3390/ma13194323. [CrossRef] [PubMed] [Google Scholar]
  6. J. König et al., “Synthesis and properties of open- and closed-porous foamed glass with a low density,” Constr Build Mater, vol. 247, 2020, DOI: 10.1016/j.conbuildmat.2020.118574. [Google Scholar]
  7. V. Lesovik et al., “Improving the behaviors of foam concrete through the use of composite binder,” Journal of Building Engineering, vol. 31, 2020, DOI: 10.1016/j.jobe.2020.101414. [CrossRef] [Google Scholar]
  8. B. Kado, S. Mohammad, Y. Huei Lee, P. Ngian Shek, and M. Aida Ab Kadir, “Effect of Curing Method on Properties of Lightweight Foamed Concrete,” International Journal of Engineering & Technology, vol. 7, no. 2. 29, 2018, DOI: 10.14419/ijet.v7i2.29.14285. [Google Scholar]
  9. S. Getahun and B. Bewket, “Journal of Civil & Environmental Engineering A Study on Effect of Partial Replacement of Cement by Cattle Bone Ash in Concrete Property,” Journal of Civil & Environmental Engineering, vol. 11, no. 2, 2021. [Google Scholar]
  10. O. Adetayo, O. Umego, O. Amu, F. Faluyi, A. Odetoye, and A. Bucknor, “Performance Evaluation of Ternary Blends of Pulverized Cow Bone Ash and Waste Glass Powder on the Strength Properties of Concrete,” Trends in Sciences, vol. 19, no. 8, 2022, DOI: 10.48048/tis.2022.3222. [CrossRef] [Google Scholar]
  11. O. A. Adetayo et al., “Evaluation of Pulverized Cow Bone Ash and Waste Glass Powder on the Geotechnical Properties of Tropical Laterite,” Silicon, vol. 14, no. 5, 2022, DOI: 10.1007/s12633-021-00999-4. [Google Scholar]
  12. C. Fapohunda, E. Ikponmwosa, and F. Falade, “Evaluation of strength relations in foamed aerated concrete containing pulverized bone (PB) as a partial replacement of cement,” Engineering Review, vol. 38, no. 1. 2018. [Google Scholar]
  13. S. V. Devi, R. Gausikan, S. Chithambaranathan, and J. W. Jeffrey, “Utilization of recycled aggregate of construction and demolition waste as a sustainable material,” in Materials Today: Proceedings, 2020. DOI: 10.1016/j.matpr.2020.12.013. [Google Scholar]
  14. A. Akhtar and A. K. Sarmah, “Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective,” J Clean Prod, vol. 186, 2018, DOI: 10.1016/j.jclepro.2018.03.085. [Google Scholar]
  15. K. Robalo, H. Costa, R. do Carmo, and E. Júlio, “Experimental development of low cement content and recycled construction and demolition waste aggregates concrete,” Constr Build Mater, vol. 273, 2021, DOI: 10.1016/j.conbuildmat.2020.121680. [CrossRef] [Google Scholar]
  16. J. Xiao, Z. Ma, T. Sui, A. Akbarnezhad, and Z. Duan, “Mechanical properties of concrete mixed with recycled powder produced from construction and demolition waste,” J Clean Prod, vol. 188, 2018, DOI: 10.1016/j.jclepro.2018.03.277. [Google Scholar]
  17. ASTM, “Standard Practice for Reducing Samples of Aggregate to Testing Size,” Astm C 702 - 9, vol. 04, no. Reapproved, pp. 700–703, 2003, DOI: 10.1520/C0702. [Google Scholar]
  18. ASTM, “ASTM International. C136/C136M-19 Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates,” West Conshohocken, PA, 2019. [Google Scholar]
  19. R. A. Robayo-Salazar, W. Valencia-Saavedra, and R.M. de Gutiérrez, “Construction and demolition waste (Cdw) recycling—as both binder and aggregates—in alkali-activated materials: A novel re-use concept,” Sustainability (Switzerland), vol. 12, no. 14, 2020, DOI: 10.3390/su12145775. [Google Scholar]
  20. P. Favaretto, G. E. N. Hidalgo, C. H. Sampaio, R. de Almeida Silva, and R. T. Leimen, “Characterization and use of construction and demolition waste from South of Brazil in the production of foamed concrete blocks,” Applied Sciences (Switzerland), vol. 7, no. 10, 2017, DOI: 10.3390/app7101090. [Google Scholar]
  21. ASTM с79б/С796М-19, “Standard Test Method for Foaming Agents for Use in Producing Cellular Concrete Using Preformed Foam,” American Society for Testing and Material, vol. 97, no. May 2019. [Google Scholar]
  22. C. Specimens and B. Statements, “Standard Test Method for Obtaining and Testing Specimens of Hardened Lightweight Insulating Concrete for Compressive Strength 1,” Test, vol. 89, no. Reapproved, pp. 5–7, 1995. [Google Scholar]
  23. Astm:C138/C138M-13, “Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric),” ASTM International, vol. i, pp. 23–26, 2013, DOI: 10.1520/C0138. [Google Scholar]
  24. A. C. C869, “Standard Specifications for Foaming Agents Used in Making Preformed Foam for Cellular Concrete, ASTM C869-91,” Annual Book of ASTM Standards, vol. 91, no. Reapproved, 1999. [Google Scholar]
  25. K. Shantveerayya, K. C. L. Mahesh, K. G. Shwetha, F. Jima, and K. Fufa, “Performance Evaluation of Hollow Concrete Blocks Made with Sawdust Replacement of Sand: Case Study of Adama, Ethiopia,” International Journal of Engineering Transactions C: Aspects, vol. 35, no. 6, pp. 1119–1126, 2022, DOI: 10.5829/ije.2022.35.06c.03. [Google Scholar]
  26. R. Sharma, “Compressive strength of concrete using construction demolition waste, glass waste, superplasticizer and fiber,” Jordan Journal of Civil Engineering, vol. 11, no. 3, pp. 455–472, 2017. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.