Open Access
Issue
E3S Web of Conf.
Volume 458, 2023
International Scientific Conference Energy Management of Municipal Facilities and Environmental Technologies (EMMFT-2023)
Article Number 09001
Number of page(s) 7
Section IT and Mathematical Modeling in Energy Systems
DOI https://doi.org/10.1051/e3sconf/202345809001
Published online 07 December 2023
  1. A. Andersson, K. Hedström, F. Karlsson, Standardizing information security –a structurational analysis. Information & Management, ISSN 0378-7206, 59(3), 103623 (2022) doi:10.1016/j.im.2022.103623 [CrossRef] [Google Scholar]
  2. A. Vedadi, M. Warkentin, A. Dennis, Herd behavior in information security decision-making. Information & Management, ISSN 0378-7206, 58(8), 103526 (2021) doi:10.1016/j.im.2021.103526 [CrossRef] [Google Scholar]
  3. V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: A survey. ACM Computing Surveys (CSUR), Article 15, 41(3), 15(1)-15(58) (2009) doi:10.1145/1541880.1541882 [Google Scholar]
  4. N. Boldyrikhin, O. Safaryan, P. Razumov, V. Porksheyan, I. Smirnov, D. Korochentsev, L. Cherckesova, A. Romanov, Controlling the Resources of the Intrusion Detection System at Network Objects Monitoring ICCAIS 2020 -3rd International Conference on Computer Applications and Information 9096741 (2020) [Google Scholar]
  5. N. Boldyrikhin, O. Safaryan, D. Korochentsev, I. Reshetnikova, I. Alferova, A. Manakova, Features of the Practical Implementation of the Method for Managing Observations of the State of Monitored Objects in Intrusion Detection Systems doi:10.3390/app13031831 [Google Scholar]
  6. F. Palmieri, S. Ricciardi, U. Fiore, et.al., Energy-oriented denial of service attacks: an emerging menace for large cloud infrastructures. J Supercomput, 71, 1620–1641 (2015) doi:10.1007/s11227-014-1242-6 [CrossRef] [Google Scholar]
  7. How the Energy Sector Can Defend Against DoS Attacks, biztechmagazine.com/article/2019/05/how-energy-sector-can-defend-against-dos-attacks (Last accessed 24.07.2023) [Google Scholar]
  8. M. Mittal, K. Kumar, S. Behal, DDoS-AT-2022: a distributed denial of service attack dataset for evaluating DDoS defense system, Proceedings of the Indian National Science Academy, 89, 306 -324 (2023) doi:10.1007 /s43538-023-00159-9 [CrossRef] [Google Scholar]
  9. S. H. C. Haris, R. B. Ahmad, M. A. H. A. Ghani, Detecting TCP SYN Flood Attack based on Anomaly Detection. 2010 Second International Conference on Network Applications, Protocols and Services, NETAPPS, Alor Setar, Kedah, Malaysia, 22 –23 Sep. (2010) doi:10.1109/NETAPPS.2010.50 [Google Scholar]
  10. A. Pandey, R. Saini Jatinderkumar, Attacks & Defense Mechanisms for TCP/ IP Based Protocols. International Journal of Engineering Innovation & Research, ISSN: 2277 –5668, 3(1) (2014) [Google Scholar]
  11. V. K. Yadav, M. C. Trivedi, B. M. Mehtre, DDA: An Approach to Handle DDoS (Ping Flood) Attack, Proceedings of International Conference on ICT for Sustainable Development. Advances in Intelligent Systems and Computing, Springer, Singapore, 408 (2016) http://doi.org/10.1007/978-981-10-0129-1_2 [Google Scholar]
  12. I. Idris, O. J. Tobi, V. O. Waziri, J. K. Alhassan, O. Joseph, HTTP Flood Mitigation Using Gateway Inspection and Second Chance Approach Analysis. International Journal of Cyber-Security and Digital Forensics (IJCSDF), 6(1), 14-22 (2017) doi:10.17781/P002239 [Google Scholar]
  13. G. Lucky, F. Jijunju, A. Marshall, A Lightweight Decision-Tree Algorithm for detecting DDoS flooding attacks, IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C), Dec. (2020) doi:10.1109/QRS-C51114.2020.00072 [Google Scholar]
  14. B. Ramkumar, T. Subbulakshmi, Tcp Syn Flood Attack Detection and Prevention System using Adaptive Thresholding Method, ITM Web of Conferences, 37, 01016 (2021) doi:10.1051/itmconf/20213701016 [CrossRef] [EDP Sciences] [Google Scholar]
  15. J. Wang, R. C.-W. Phan, J. N. Whitley, D. J. Parish, Augmented Attack Tree Modeling of Distributed Denial of Services and Tree Based Attack Detection Method. 2010 10th IEEE International Conference on Computer and Information Technology, Bradford, UK, 1009-1014 (2010) doi: 10.1109/CIT.2010.185 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.