Open Access
Issue |
E3S Web Conf.
Volume 459, 2023
XXXIX Siberian Thermophysical Seminar (STS-39)
|
|
---|---|---|
Article Number | 03009 | |
Number of page(s) | 6 | |
Section | Methods for Controlling Turbulence and Intensifying Heat and Mass Transfer | |
DOI | https://doi.org/10.1051/e3sconf/202345903009 | |
Published online | 04 December 2023 |
- S.G. Kandlikar, W.J. Grande. Heat Transfer Engineering 24, 3 (2003) [CrossRef] [Google Scholar]
- M. Reeves, J. Moreno, P. Beucher, S.-J. Loong, D. Bono. Development of Research in Microscale and Nanoscale Thermal and Fluid Sciences. P. 47 (2016) [Google Scholar]
- N. Bessanane, M. Si-Ameur, M. Rebay. Intern. J. Heat and Technology 40, 247 (2022) [CrossRef] [Google Scholar]
- J. Xu, K. Zhang, J. Duan, J. Lei, J. Wu. Crystals. 11, 9772021 (2021) [Google Scholar]
- M. Rebay, S. Kakac, R.M. Cotta. Microscale and Nanoscale Heat Transfer: Analysis, Design, and Application (1st ed.). CRC Press (2016) [Google Scholar]
- A.N. Skrypnik, A.V. Shchelchkov, I.A. Popov, D.V. Ryzhkov, S.A. Sverchkov, Y.V. Zhukova, A.D. Chornyi, N.N. Zubkov. J. Engineering Physics and Thermophysics. 91, 52 (2018) [CrossRef] [Google Scholar]
- A. Shchelchkov. Heat Transfer Research. 47, 545 (2016) [CrossRef] [Google Scholar]
- W. Nunner, VDI-Forschungscheft. 455, 5 (1956) [Google Scholar]
- R. Koch. VDI-Forschungscheft. 469, 44 (1958). [Google Scholar]
- J.F. Tullius, T.K. Tullius, Y. Bayazitoglu. Intern. J. Heat Mass Transfer, 55, 3921 (2012) [CrossRef] [Google Scholar]
- B.V. Dzyubenko, G.A. Dreitser, R.I. Yakimenko. Intern. J. Heat Exchangers. 7, 145 (2006) [Google Scholar]
- V.V. Olimpiev, B.G. Mirzoev. Russian Aeronautics. 56, 185 (2013) [CrossRef] [Google Scholar]
- G.K. Il’in, S.E. Tarasevich, A.V. Shchelchkov, A.B. Yakovlev, A.V. Zlobin. Russian Aeronautics. 51, 402 (2008) [CrossRef] [Google Scholar]
- I.A. Popov. Ser. Intensification of heat transfer. Kazan (2007) [Google Scholar]
- Y.F. Gortyshov, I.A. Popov., K.E. Gulitsky. Experimental studies of hydrodynamics and heat transfer in channels with high-porous cellular materials in single-phase forced convection and flow boiling of working fluids, in Proceedings International mechanical engineering congress and exposition, ASME, 14-19 November 1999 Nashville, New York, USA (1999) [Google Scholar]
- R.L. Webb. High-performance, low-cost liquid micro-channel cooler // Department of Mechanical Engineering, Penn State University, University Park, PA 1680 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.