Open Access
Issue
E3S Web Conf.
Volume 459, 2023
XXXIX Siberian Thermophysical Seminar (STS-39)
Article Number 08007
Number of page(s) 7
Section Thermophysics of Micro- and Nanosystems
DOI https://doi.org/10.1051/e3sconf/202345908007
Published online 04 December 2023
  1. H. Tang, Y. Tang, Z. Wan, J. Li, W. Yuan, L. Lu, Y. Li, K. Tang, Appl. Energy 223 (2018) [Google Scholar]
  2. A. Bar-Cohen, M. Asheghi, T. Chaîner, S. Garimella, K. Goodson, C. Gorle, R. Mandel, J. Maurer, M. Ohadi, J. Palko, P. Parida, Y. Peles, J. Plawsky, M. Schultz, J. Weibel, Y. Joshi, IEEE Trans. 1, 1 (2021) [Google Scholar]
  3. T. Mattila, J. Li, J. Kivilahti, Microelectron. Reliab. 52, 1 (2012) [Google Scholar]
  4. D. Liu, F. Zhao, H. Yang, G. Tang, Energy 83 (2015) [Google Scholar]
  5. K. Yang, W. Ding, C. Yeh, M. Lee, C. Wang, Appl. Therm. Eng. 98 (2016) [Google Scholar]
  6. Y. Tang, L. Lin, S. Zhang, J. Zeng, K. Tang, G. Chen, W. Yuan, Energy Convers. Manage 151 (2017) [CrossRef] [Google Scholar]
  7. P. Ramadass, B. Haran, R.E. White, B.N. Popov, J. Power Sources 112, 2 (2002) [Google Scholar]
  8. R.B. Wright, J.P. Christophersen, C.G. Motloch, J.R. Belt, C.D. Ho, V. Battaglia, J. Barnes, T.Q. Duong, R.A. Sutula, J. Power Sources 119 (2003) [Google Scholar]
  9. W. Huang, K. Rajamani, M.R. Stan, K. Skadron, IEEE Micro. 31, 4 (2011) [Google Scholar]
  10. R. Mahajan, C.P. Chiu, G. Chrysler, Proc. IEEE, 94 (2006) [Google Scholar]
  11. P. Wang, P. Mccluskey, A. Bar-Cohen, ASME J. Electron. Packag. 135, 2 (2013) [Google Scholar]
  12. H. Shabgard, M.J. Allen, N. Sharifi, S.P. Benn, A. Faghri, T.L. Bergman, Int. J. Heat Mass Transfer 89 (2015) [Google Scholar]
  13. C.W. Chan, E. Siqueiros, J. Lingchin, M. Royapoor, A.P. Roskilly, Renew. Sustain. Energy Rev. 50 (2015) [Google Scholar]
  14. X. Chen, H. Ye, X. Fan, T. Ren, G.Q. Zhang, Appl. Therm. Eng. 96 (2016) [CrossRef] [Google Scholar]
  15. H. Tang, Y. Tang, J. Li, Y. Sun, G. Liang, R. Peng, Appl. Therm. Eng. 131 (2018) [Google Scholar]
  16. R. Mahajan, C.P. Chiu, G. Chrysler, Proc. IEEE 94 (2006) [Google Scholar]
  17. M. Bulut, S.G. Kandlikar, N. Sozbir, Heat Transfer Eng. 40, 19 (2019) [Google Scholar]
  18. R. S. Prasher, ASME J. Electron. Packag. 125, 3 (2003) [Google Scholar]
  19. G. Patankar, J.A. Weibel, S.V. Garimella, Int. J. Heat Mass Transfer 106 (2017) [Google Scholar]
  20. T. Liu, M. Asheghi, K. Goodson, Appl. Mech. Rev. 73, 1 (2021) [Google Scholar]
  21. A. Faghri, J. Heat Transfer 134, 12 (2012) [CrossRef] [Google Scholar]
  22. K. Shukla, J. Electron Cool. Thermal Control 5 (2015) [Google Scholar]
  23. О. Kabov, D. Zaitsev, E. Tkachenko, Proceedings IHTC-16 (2018) [Google Scholar]
  24. M.V. Pukhovoy, E.F. Bykovskaya, O.A. Kabov, J. Phys. Conf. Ser. 1677 (2020) [Google Scholar]
  25. M.V. Pukhovoy, K.A. Kunts, S.E. Spesivtsev, O.A. Kabov, J. Phys. Conf. Ser. 1867, 1 (2021) [Google Scholar]
  26. M. Pukhovoy, E. Bykovskaya, O. Kabov, J. Phys. Conf. Ser 2119 (2021) [Google Scholar]
  27. M. Overholt, A. McCandless, K. Kelly, C. Becnel, S. Motakef, Proceedings ICMM2005 75250 (2005) [Google Scholar]
  28. G. Michna, E. Browne, Y. Peles, M.K. Jensen, Int. J. Heat Mass Transfer 54 (2011) [Google Scholar]
  29. D.J. Butterfield, J. Crockett, UNSGC (2019) [Google Scholar]
  30. A. Cebo-Rudnicka, Z. Malinowsk, A. Buczek, Int. J. Therm. Sci. 110 (2016) [Google Scholar]
  31. J. Yang, L.C. Chow, M.R. Pais, J. Heat Transfer 188 (1996) [Google Scholar]
  32. G. Vondran, K. Makris, D. Fragopoulos, C. Papadas, N. Kumari. 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (2012) [Google Scholar]
  33. Y. Zhu, D.S. Antao, K. Chu, T.J. Hendricks, E.N. Wang. 15th International Heat Transfer Conference (2014) [Google Scholar]
  34. J.W. Palko, H. Lee, C. Zhang, K.E. Goodson, Adv. Funct. Mater. 1703265 (2017) [Google Scholar]
  35. J. Calarne, R. Bass, R. Myers, P. Safier, ASME - J. Heat Transfer 131 (2009) [Google Scholar]
  36. J. Palko, C. Zhang, J. Wilbur, T. Dusseault, M. Asheghi, K. Goodson, J. Santiago, Appl. Phys. Lett. 107 (2015) [CrossRef] [Google Scholar]
  37. M. Alipanah, S. Moghaddam, Int. J. Heat Mass Transfer 161 (2020) [Google Scholar]
  38. M. Nazari, A. Masoudi, P. Jafari, P. Irajizad, V. Kashyap, H. Ghasemi, Langmuir 35 (2018) [Google Scholar]
  39. D. Deng, Q. Huang, Y. Xie, X. Huang, X. Chu, Appl. Therm. Eng. 125 (2017) [Google Scholar]
  40. Y.S. Ju, M. Kaviany, Y. Nam, S. Sharratt, J.S. Hwang, I. Catton, E. Fleming, P. Dussinger, Int. J. Heat Mass Transfer 60 (2013) [Google Scholar]
  41. G.S. Hwang, E. Fleming, B. Carne, S. Sharratt, Y. Nam, P. Dussinger, Y.S. Ju, M. Kaviany, Int. J. Heat Mass Transfer 54 (2011) [Google Scholar]
  42. V.S. Ajaev, O.A. Kabov, Int. J. Heat Mass Transfer 108(A) (2017) [Google Scholar]
  43. V.S. Ajaev, O.A. Kabov, Phys. Rev. E 105, 6 (2022) [CrossRef] [Google Scholar]
  44. V.S. Ajaev, J. Klentzman, O.A. Kabov, Numer. Heat Transfer A 82, 12 (2022) [Google Scholar]
  45. M. Steinke and S. Kandlikar, Proceedings 4th ICNMM (2006) [Google Scholar]
  46. M. Sung & I. Mudawar, Int. J. Heat Mass Transfer 51 (2008) [Google Scholar]
  47. S. Kandlikar, Multiph. Sci. 13 (2001) [Google Scholar]
  48. R. Ranjan, J. Y. Murthy, S. V. Garimella, D. H. Altman, M. T. North, IEEE Transactions on Components, Packaging and Manufacturing Technology 2, 2 (2012) [Google Scholar]
  49. D. Xie, C. Sun, G. Wang, S. Chen, G. Ding, Int. J. Heat Mass Transfer 175 (2021) [Google Scholar]
  50. J. B. Boreyko, C.H. Chen, Int. J. Heat Mass Transfer 61 (2013) [Google Scholar]
  51. B. Zohuri, Heat Pipe Design and Technology: Modern Applications For Practical Thermal Management (Springer, 2016) [CrossRef] [Google Scholar]
  52. K. F. Wiedenheft, H. A. Guo, X. Qu, J.B. Boreyko, F. Liu, K. Zhang, F. Eid, A. Choudhury, Z. Li, C.H. Chen, Appl. Phys. Lett. 110, 14 (2017) [CrossRef] [Google Scholar]
  53. J. Huang, J. Zhang, L. Wang, Appl. Therm. Eng. 89 (2015) [Google Scholar]
  54. T. Liu, J.W. Palko, J.S. Katz, E.M. Dede, F. Zhou, M. Asheghi, K.E. Goodson, Appl. Phys. Lett. 115, 25 (2019) [Google Scholar]
  55. G. Patankar, J.A. Weibel, S.V. Garimella, Int. J. Heat Mass Transfer 106 (2017) [Google Scholar]
  56. X. Ji, A. Abanda, Exp. Therm. Fluid Sci. 40 (2012) [Google Scholar]
  57. B. Mohseni-Gharyehsafa, Y.V. Lyulin, S.A. Evlashin, O.A. Kabov, H. Ouerdane, Therm. Sci. Eng. Prog. 28, 8 (2022) [Google Scholar]
  58. D. Xie, C. Sun, G. Wang, S. Chen, G. Ding, Int. J. Heat Mass Transfer 175 (2021) [Google Scholar]
  59. S. Joshi, F. Zhou, E. Dede, D. Lohan, S. Sudhakar, J. Weibel, 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (2020) [Google Scholar]
  60. L. Courbin, E. Denieul, E. Dressaire, M. Roper, A. Ajdari, H.A. Stone, Nature Mater. 6, 9 (2007) [Google Scholar]
  61. Y. Nam, Y.S. Ju, J. Adhes. Sci. Technol. 27, 20 (2013) [Google Scholar]
  62. X. Dai, F. Yang, R. Yang, X. Huang, W.A. Rigdon, X. Li, C. Li, Appl. Phys. Lett. 105, 19 (2014) [Google Scholar]
  63. B. Horacek, K. Kiger, J. Kim, Int. J. Heat Mass Transfer 48, 8 (2005) [Google Scholar]
  64. C. Sodtke, P. Stephan, Int. J. Heat Mass Transfer 50, 19–20 (2007) [Google Scholar]
  65. H. Qiu, Y. Yang, Multiscale Micro/Nanostructured Heat Spreaders for Thermal Management of Power Electronics (2021) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.