Open Access
Issue
E3S Web Conf.
Volume 460, 2023
International Scientific Conference on Biotechnology and Food Technology (BFT-2023)
Article Number 02016
Number of page(s) 9
Section Food Distribution Management System
DOI https://doi.org/10.1051/e3sconf/202346002016
Published online 11 December 2023
  1. A. Abdalla, J.J. Buckley, Monte Carlo Methods in Fuzzy Linear Regression. Soft Computing, 11, 991–996 (2007) [CrossRef] [Google Scholar]
  2. H. Abdi, Partial least squares regression and projection on latent structure regression (PLS Regression). Wiley Interdisciplinary Reviews: Computational Statistics, 2 (1), 97–106 (2010). DOI: 10.1002/wics.51 [CrossRef] [Google Scholar]
  3. A. Bargiela, W. Pedrycz, Nakashima T. Multiple Regression with Fuzzy Data. Fuzzy Sets and Systems, 158, 2169–2188 (2007) [CrossRef] [Google Scholar]
  4. M. P. Bazilevsky, Estimation Linear Non-Elementary Regression Models Using Ordinary Least Squares. Modeling, Optimization and Information Technology, 8(4), (2020) DOI: 10.26102/2310-6018/2020.31.4.026. [Google Scholar]
  5. M. P. Bazilevskiy, Multi-criteria approach to pair-multiple linear regression models constructing. Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics, 21 (1), 88–99 (2021) DOI: 10.18500/1816-9791-2021-21-1-88-99. [CrossRef] [Google Scholar]
  6. M. P. Bazilesky, Ordinary Least Squares Estimation of Simple Non-Elementary Linear Regressions with a Linear Argument in a Binary Operation. Proceedings in Cybernetics, 4 (48), 69–76 (2022) DOI: 10.34822/1999-7604-2022-4-69-7. [Google Scholar]
  7. A. M. Bianco, P. M. Spano, Robust estimation in partially linear errors-in-variables models. Computational Statistics & Data Analysis, 106, 46–64 (2017) DOI: 10.1016/j-.csda.2016.09.002 [CrossRef] [Google Scholar]
  8. R. J. Brook, G. C. Arnold, Applied Regression Analysis and Experimental Design. (Boca Raton, FL: CRC Press, 2018) [CrossRef] [Google Scholar]
  9. L.-H. Chen, S.-H. Nien, Mathematical Programming Approach to Formulate Intuitionistic Fuzzy Regression Model Based on Least Absolute Deviations. Fuzzy Optim Decis Making, 19 (2), 191–210 (2020) [CrossRef] [Google Scholar]
  10. N. Gospodinov, I. Komunjer, S. Ng, Simulated minimum distance estimation of dynamic models with errors-in-variables. Journal of Econometrics, 200, 181–193 (2017) DOI: 10.1016/jjeconom.2017.06.004 [CrossRef] [Google Scholar]
  11. J. Harrell, E. Frank, Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis. Springer Series in Statistics (2015) [CrossRef] [Google Scholar]
  12. D. Hose, M. Hanss, Fuzzy Linear Least Squares for the Identification of Possibilistic Regression Models. Fuzzy Sets and Systems, 267, 82–95 (2019) [CrossRef] [Google Scholar]
  13. A. H. Khammar, M. Arefi, M. G. Akbari, A General Approach to Fuzzy Regression Models Based on Different Loss Functions. Soft Comput, 25 (2), 835–849 (2021) [CrossRef] [Google Scholar]
  14. M. Kuhn, K. Johnson, Applied predictive modeling, Springer (2018) [Google Scholar]
  15. J.-G. Lin, Q.-Y. Zhuang, C. Huang, Fuzzy Statistical Analysis of Multiple Regression with Crisp and Fuzzy Covariates and Applications in Analyzing Economic Data of China. Computational Economics, 39, 29–49 (2012) [CrossRef] [Google Scholar]
  16. V. I. Mironov, Yu.V. Mironov, The least squares method in problems of identifying parameters of models of nonlinear dynamic systems. Proceedings of SPIIRAN, 9, 148–158 (2009) DOI: 10.15622/sp.9.6 [Google Scholar]
  17. D. C. Montgomery, E. A. Peck, Vining G. G. Introduction to Linear Regression Analysis. (Hoboken, NJ: John Wiley & Sons, 2021) [Google Scholar]
  18. I. Pardoe, Applied regression modeling. Wiley (2020) [CrossRef] [Google Scholar]
  19. Y. Park, C. Park, Autocovariance least-squares based measurement error covariance estimation for attitude determination of lunar lander. Proc IMechE Part G: J Aerospace Engineering, 5, 1–13 (2016) [Google Scholar]
  20. M. Rudelson, S. Zhou, Errors-in-variables models with dependent measurements. Electronic Journal of Statistics, 11 (1), 1699–1797 (2017) DOI: 10.1214/17-EJS1234 [CrossRef] [Google Scholar]
  21. P.H. Westfall, A.L. Arias, Understanding regression analysis: a conditional distribution approach. Chapman and Hall/CRC (2020) [CrossRef] [Google Scholar]
  22. C. Wu, J. Z. Yu, Evaluation of linear regression techniques for atmospheric applications: The importance of appropriate weighting. Atmospheric Measurement Techniques, 11, 1233–1250 (2018) DOI: 10.5194/amt-11-1233-2018 [CrossRef] [Google Scholar]
  23. K. Xu, Y. Ma, L. Wang, Instrument assisted regression for errors in variables models with binary response. Scandinavian Journal of Statistics, 42 (1), 104–117 (2015) DOI: 10.1111/sjos.12097 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.