Open Access
Issue
E3S Web Conf.
Volume 460, 2023
International Scientific Conference on Biotechnology and Food Technology (BFT-2023)
Article Number 04028
Number of page(s) 9
Section IoT, Big Data and AI in Food Industry
DOI https://doi.org/10.1051/e3sconf/202346004028
Published online 11 December 2023
  1. A.S. Krylov, Analysis of Medical Images (Conversation with a Mathematician about Diagnostic Problems Using Machine Learning). Postnauka, September 29, 2017. postnauka.org/faq/80995 (last accessed 10.10.2023) [Google Scholar]
  2. Y. Goodfellow, A. Courville, Deep Learning MIT Press, 2016. ISBN: 9780262035613. www.deeplearningbook.org (last accessed 10.10.2023) [Google Scholar]
  3. S.S. Yadav, S.M. Jadhav, Classification of medical images based on a deep convolutional neural network for the diagnosis of diseases. J Big Data 6, 113 (2019) https://doi.org/10.1186/s40537-019-0276-2 [CrossRef] [Google Scholar]
  4. C. C. Aggarwal, et al., Neural networks and deep learning. In: Springer, 10, 978–973 (2018) [Google Scholar]
  5. Deep Learning in Medical Image Analysis, Edited by S. Kevin Zhou, Hayit Greenspan, Dinggang Shen, www.sciencedirect.com/book/9780128104088/deep-learning-in-medical-image-analysis (last accessed 10.10.2023) [Google Scholar]
  6. Kelei He, et al., Transformers in medical image analysis. Intelligent Medicine, 3, 59–78 (2023) www.sciencedirect.com/journal/intelligent-medicine (last accessed 12.10.2023) [Google Scholar]
  7. C. F. Ghesu, B. Georgescu, Yue Zhang, Sasa Grbic, Dorin Comaniciu, Artificial Intelligence for Computational Modeling of the Heart. Book, 3 -Learning cardiac anatomy, 97–116 (2020) https://doi.org/10.1016/B978-0-12-817594-1.00014-0 [Google Scholar]
  8. Hicham Moujahid, Bouchaib Cherradi, Oussama El Gannour, Lhoussain Bahatti, Oumaima Terrada, Soufiane Hamida, Convolutional Neural Network Based Classification of Patients with Pneumonia using X-ray Lung Images. ASTESJ-Science, 5 (5), 167–175 (2020) DOI: 10.25046/aj050522 [CrossRef] [Google Scholar]
  9. S. M. McKinney, et al., Deep learning for breast cancer screening using mammography: A retrospective, multi-cohort study. Nature Medicine (2019) DOI: 10.1038/s41591-019-0447-x [Google Scholar]
  10. V. Gulshan, et al., Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA Ophthalmology, (2016) DOI: 10.1001/jamaophthalmol.2016.1284 [Google Scholar]
  11. N. Coudray, et al., Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nature Medicine (2018) DOI: 10.1038/s41591-018-0177-5 [Google Scholar]
  12. A. Esteva, et al., Dermatologist-level classification of skin cancer with deep neural networks. Annals of Oncology (2017) DOI: 10.1093/annonc/mdx220 [Google Scholar]
  13. C. Krittanawong, et al., Machine learning-based prediction of adverse events following an acute coronary syndrome (PREDICT): A modelling study of pooled datasets (The Lancet, 2020) DOI: 10.1016/S0140-6736(19)32940-1 [Google Scholar]
  14. J. Choi, J. Choi, D.J. Lee, Overview of Deep Learning in Medical Imaging. Imaging Science in Dentistry, 48 (1), 1–7 (2018) [Google Scholar]
  15. H. Greenspan, B. van Ginneken, R.M. Summers, Guest Editorial Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique. IEEE Transactions on Medical Imaging, 35 (5), 1153–1159 (2016) [CrossRef] [Google Scholar]
  16. A. Haleem, M. Javaid, R. Pratap Singh, R. Suman, Telemedicine for healthcare: Capabilities, features, barriers, and applications. Sensors International, 2 (2021) https://doi.org/10.1016Zj.sintl.2021.100117 [Google Scholar]
  17. M. Gazda et al. “Self-Supervised Deep Convolutional Neural Network for Chest X- Ray Classification”. In: IEEE Access, 9, 151972–151982 (2021) [CrossRef] [Google Scholar]
  18. D. Jiang et al. “Could graph neural networks learn better molecular representation for drug discovery? A comparison study of descriptor-based and graph-based models”. In: Journal of cheminformatics, 13 (1), 1–23 (2021) [CrossRef] [PubMed] [Google Scholar]
  19. M. M. Bronstein, et al., Geometric deep learn-ing: Grids, groups, graphs, geodesics, and gauges. In: arXiv preprint arXiv:2104.13478 (2021) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.