Open Access
Issue
E3S Web Conf.
Volume 460, 2023
International Scientific Conference on Biotechnology and Food Technology (BFT-2023)
Article Number 09040
Number of page(s) 18
Section Agroecology and Sustainable Food Systems
DOI https://doi.org/10.1051/e3sconf/202346009040
Published online 11 December 2023
  1. A. El-Sayed & M. Kamel, Coronaviruses in humans and animals: the role of bats in viral evolution. Environ. Sci. Pollut. Res., 28 (16), 19589–19600 (2021) [CrossRef] [PubMed] [Google Scholar]
  2. Organisation for Economic Co-operation and Development (OECD) TACKLING CORONAVIRUS (COVID-19) CON-TRIBUTING TO A GLOBAL EFFORT; COVID-19 and the Food and Agriculture Sector: Issues and Policy Responses. Accessed 10 June 2021. Available Online at: https://www.oecd.org/ (2020) [Google Scholar]
  3. S. Muhammad, X. Long & M. Salman, COVID-19 pandemic and environmental pollution: A blessing in disguise?. Sci. Total Environ., 728, 138820 (2020) [CrossRef] [Google Scholar]
  4. Rume T & Islam SDU Environmental effects of COVID-19 pandemic and potential strategies of sustainability. Heliyon, 6 (e04965), 1–8 (2020) [Google Scholar]
  5. World Health Organization (WHO), Coronavirus Disease (COVID-19) Dashboard. Accessed 01 December 2020. Available Online at: https://covid19.who.int (2021) [Google Scholar]
  6. Y. Oudda, A.I. Maha & L. Bennis, Les Retombées de La Crise Sanitaire Covid-19 Sur l’Economie Marocaine. Revue Du Contrôle, de La Comptabilité et de l’audit 4 (2) (2020) [Google Scholar]
  7. Organisation Internationale du Travail (OIT), Travail productif et décent dans l’agriculture. Première edition, 1–11 (2019) [Google Scholar]
  8. S. Nangombe, T. Zhou, W. Zhang, B. Wu, S. Hu, L. Zou & D. Li, Record-breaking climate extremes in Africa under stabi-lized 1.5 C and 2 C global warming scenarios. Nat. Clim. Change, 8 (5), 375–380 (2018) [CrossRef] [Google Scholar]
  9. B.W. Amoabeng, A.C. Johnson & G.M. Gurr, Natural enemy enhancement and botanical insecticide source: a review of dual use companion plants. Appl. Entomol. Zool., 54 (1), 1–19 (2019) [CrossRef] [Google Scholar]
  10. J.A. Gnago, M. Danho, T. Atcham Agneroh, I.K. Fofana & A.G. Kohou, Efficacité des extraits de neem (Azadirachta indica) et de papayer (Carica papaya) dans la lutte contre les insectes ravageurs du gombo (Abelmoschus esculentus) et du chou (Brassica oleracea) en Côte d’Ivoire, Int. J. Biol. Chem. Sci. 4(4): 953–966 (2010) [Google Scholar]
  11. A. Ratnadass, P. Fernandes, J. Avelino & R. Habib, Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agron. Sustain. Dev., 32 (1), 273–303 (2012) [CrossRef] [Google Scholar]
  12. J. Ribot, Cause and response: vulnerability and climate in the Anthropocene. J. Peasant Stud., 41 (5), 667–705 (2014) [CrossRef] [Google Scholar]
  13. K. Poveda, M.I. Gómez & E. Martinez, Diversification practices: their effect on pest regulation and production. Rev. Co-lomb. Entomol., 34 (2), 131–144 (2008) [CrossRef] [Google Scholar]
  14. E. Malézieux, Y. Crozat, C. Dupraz, M. Laurans & D. Makowski, Mixing plant species in cropping systems: concepts, tools and models. A review. Springer Verlag/EDP Sciences/INRA. Agron. Sustain. Dev., 29 (1), 43–62 (2009) [CrossRef] [EDP Sciences] [Google Scholar]
  15. FAO & PNUE, Convention de Rotterdam applicable à certains produits chimiques et pesticides dangereux qui font l’objet d’un commerce international, édition révisée, Nations Unies. Accessed 10 December 2020. Available Online at: http://www.pic.int/Accueil/tabid/1731/language/fr-CH/Default.aspx (2017) [Google Scholar]
  16. K. Born, M. Christoph, A.H. Fink, P. Knippertz, H. Paeth & P. Speth, Moroccan climate in the present and future: com-bined view from observational data and regional climate scenarios. In Climatic changes and water resources in the Middle East and North Africa. Springer, Berlin, Heidelberg. 29–45 (2008) [CrossRef] [Google Scholar]
  17. P. Adimi, La gestion marocaine de la crise pandémique du COVID-19. Dossier du CIAAF, (2). 17 (2020) [Google Scholar]
  18. A.A. Ali, A. Bassou, M. Dryef, K. El Aynaoui, R. El Houdaigui, A. Saaf, La stratégie du Maroc face au CO-VID-19/Morocco’s Strategy Against COVID-19. Pol. C. New South. 37 (2020) [Google Scholar]
  19. A. Mishra, E. Bruno & D. Zilberman, Compound natural and human disasters: Managing drought and COVID-19 to sus-tain global agriculture and food sectors. Sci. Total Environ., 754, 142210 (2021) [CrossRef] [Google Scholar]
  20. M.A. Altieri & C.I. Nicholls, Agroecology and the emergence of a post COVID-19 agriculture. Agric. Hum., 37 (3), 525–526 (2020) [CrossRef] [PubMed] [Google Scholar]
  21. A. Wezel, M. Goris, J. Bruii, G.F. Félix, A. Peeters, P. Bàrberi, … & P. Migliorini, Challenges and action points to amplify agroecology in Europe. Sustainability, 10 (5), 1598 (2018) [CrossRef] [Google Scholar]
  22. R. D’Annolfo, B. Gemmill-Herren, D. Amudavi, H.W. Shiraku, M. Piva & L.A. Garibaldi, The effects of agroecological farming systems on smallholder livelihoods: A case study on push-pull system from Western Kenya. Int J Agric Sus-tain, 19 (1), 56–70 (2021) [CrossRef] [Google Scholar]
  23. B. Song, Z. Jie, L. Natasha, Y.Y. Wiggins, T. Guangbo & S. Xusheng, Intercropping with Aromatic Plants Decreases Her-bivore Abundance, Species Richness, and Shifts Arthropod Community Trophic Structure. Envir. Entom. 41(4): 872–879 (2012) [CrossRef] [Google Scholar]
  24. M.A. Altieri, Agroecology: the science of natural resource management for poor farmers in marginal environments. Agric. Ecosyst. Environ., 93 (1-3), 1–24 (2002) [CrossRef] [Google Scholar]
  25. M.D. Raseduzzaman & E.S. Jensen, Does intercropping enhance yield stability in arable crop production? A me-ta-analysis. European Journal of Agronomy, 91, 25–33 (2017) [CrossRef] [Google Scholar]
  26. Harbouze R., Pellissier J.P., Rolland J.P. & Khechimi W., Rapport de synthèse sur l’agriculture au Maroc. [Rapport de re-cherche] CIHEAM-IAMM. 104 (2019) [Google Scholar]
  27. J. Marzin, P. Bonnet, O. Bessaoud & C. Ton-Nu, Etude sur l’agriculture familiale à petite échelle au Proche-Orient et Afrique du Nord: Synthèse. Ed. FAO / Cirad / CIHEAM-IAMM. 98 (2017) [Google Scholar]
  28. N. Akesbi, Evolution et perspectives de l’agriculture marocaine. Rapport, 50, 85–198 (2006) [Google Scholar]
  29. A. Louali, Le secteur agricole marocain: Tendances structurelles, enjeux et perspectives de développement. Rapport DEPF Etudes, 1–33 (2019) [Google Scholar]
  30. R.B. Kerr, J. Kangmennaang, L. Dakishoni, H. Nyantakyi-Frimpong, E. Lupafya, L. Shumba, … & I. Luginaah, Participa-tory agroecological research on climate change adaptation improves smallholder farmer household food security and dietary diversity in Malawi. Agric. Ecosyst. Environ., 279, 109–121 (2019) [CrossRef] [Google Scholar]
  31. I. Berni, A. Menouni, I.G. El, R.C. Duca, M.P. Kestemont, L. Godderis & S.J. El Understanding farmers’ safety behavior regarding pesticide use in Morocco. Sustain. Prod. Consum., 25, 471–483 (2021) [CrossRef] [Google Scholar]
  32. S.R. Sippel, Breaking ground: multi-family farm entrepreneurs in Moroccan export agriculture. J. Rural Stud., 45, 279–291 (2016) [CrossRef] [Google Scholar]
  33. M. Errahj, Étude sur l’agriculture familiale à petite échelle au Proche-Orient et Afrique du Nord. Pays focus: Maroc. Rapport de FAO, CIHEAM-IAMM et CIRAD. ISBN 978-92-5-209640-5, 98 (2017) [Google Scholar]
  34. N. Akesbi, Which agricultural policy for which food security in Morocco? In: Gertel, J., Sippel, S.R. (Eds.), Seasonal Workers in Mediterranean Agriculture. The Social Costs of Eating Fresh. Routledge, London and New York, pp. 167–174 (2014) [Google Scholar]
  35. M. Moussaoui, K. Allali, M. Bendaoud, R. Doukkali & M. Mahdi, Analyse socioéconomique des rôles de l’agriculture et conséquences en matière de politique. Etude de Cas Maroc’, Rapport de synthèse, Projet FAO-ROA/Maroc. FAO, Rome, Italy. (2003) [Google Scholar]
  36. N. Akesbi, Une nouvelle stratégie pour l’agriculture marocaine: Plan Maroc Vert. New Medit: Mediterranean Journal of Economics, Agriculture and Environment. Rev. Médit. Econ. Agr. Env., 11 (2), 12 (2012) [Google Scholar]
  37. C.A. Brühl & J.G. Zaller, Biodiversity decline as a consequence of an inappropriate environmental risk assessment of pesticides. Front. Environ. Sci., 7, 177 (2019) [CrossRef] [Google Scholar]
  38. J.R. Rohr, D.J. Civitello, F.W. Halliday, P.J. Hudson, K.D. Lafferty, C.L. Wood & E.A. Mordecai, Towards common ground in the biodiversity-disease debate. Nat. Ecol. Evol, 4 (1), 24–33 (2020) [Google Scholar]
  39. P. Grandcolas & J.L. Justine, COVID-19 or the pandemic of mistreated biodiversity. The Conversation. 3. hal-02559697 (2020) [Google Scholar]
  40. M. Everard, P. Johnston, D. Santillo & C. Staddon, The role of ecosystems in mitigation and management of Covid-19 and other zoonoses. Environ. Sci. Policy., 111, 7–17 (2020) [CrossRef] [Google Scholar]
  41. S. Berton, R. Billaz, P. Burger & A. Lebreton, Agroécologie, une transition vers des modes de vie et de développement viables. Paroles d’acteurs, 20–21 (2012) [Google Scholar]
  42. M. Piraux, S. Luciano, D. Paulo & D. Ghislaine, La transition agroecologique comme une innovation socio-territoriale. In ISDA 2010, Cirad-Inra-SupAgro, 9 (2010) [Google Scholar]
  43. Y. Abourabi, Reportage sur l’importance d’adopter l’agroécologie au Maroc. Rev. Intern. Franco., 17 Rue Tiddas, 10010 Rabat, Maroc (6). 4–18 (2020) [Google Scholar]
  44. J. Kaur, A.K. Prusty, N. Ravisankar, A.S. Panwar, M. Shamim, S.S. Walia … & P. Kashyap, Farm typology for planning targeted farming systems interventions for smallholders in Indo-Gangetic Plains of India. Scien. reports, 11 (1), 1–16 (2021) [CrossRef] [Google Scholar]
  45. N. Akesbi, D. Benatya, N. El Aoufi, L’agriculture marocaine à l’épreuve de la mondialisation. Econ. Critiq., Rabat, 12–23 (2008) [Google Scholar]
  46. Y. Schoonhoven & H. Runhaar, Conditions for the adoption of agro-ecological farming practices: a holistic framework illustrated with the case of almond farming in Andalusia. Int J Agric Sustain, 16 (6), 442–454 (2018) [CrossRef] [Google Scholar]
  47. A. Coulibaly, M. Motelica-Heino & E. Hien, Determinants of Agroecological Practices Adoption in the Sudano-Sahelian Zone. J. Environ. Prot., 10 (7), 900–918 (2019) [CrossRef] [Google Scholar]
  48. B.J. Middendorf, A. Faye, G. Middendorf, Z.P. Stewart, P.K. Jha & P.V. Prasad, Smallholder farmer perceptions about the impact of COVID-19 on agriculture and livelihoods in Senegal. Agric. Syst., 190, 103108 (2021) [CrossRef] [Google Scholar]
  49. R. Goswami, K. Roy, S. Dutta, K. Ray, S. Sarkar, K. Brahmachari, … & K. Majumdar, Multi-faceted impact and outcome of COVID-19 on smallholder agricultural systems: Integrating qualitative research and fuzzy cognitive mapping to ex-plore resilient strategies. Agric. Syst., 189, 103051 (2021) [CrossRef] [Google Scholar]
  50. Deaconu A., Berti P.R., Cole D.C., Mercille G. & Batal M., Agroecology and nutritional health: A comparison of agroecologi-cal farmers and their neighbors in the Ecuadorian highlands. Food Policy, 101, 102034 (2021) [CrossRef] [Google Scholar]
  51. P. Tittonell, M. Fernandez, V.E. El Mujtar, P.V. Preiss, S. Sarapura, L. Laborda, … & I. M. Cardoso, Emerging responses to the COVID-19 crisis from family farming and the agroecology movement in Latin America-A rediscovery of food, farmers and collective action. Agric. Syst., 190, 103098 (2021) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.