Open Access
Issue
E3S Web Conf.
Volume 472, 2024
International Conference on Renewable Energy, Green Computing and Sustainable Development (ICREGCSD 2023)
Article Number 01005
Number of page(s) 13
Section Smart and Energy Efficient Systems
DOI https://doi.org/10.1051/e3sconf/202447201005
Published online 05 January 2024
  1. M. Cheng and Y. Zhu, “The state of the art of wind energy conversion systems and technologies: A review,” Energy Convers. Manag., vol. 88, pp. 332–347, Dec. 2014. [CrossRef] [Google Scholar]
  2. S. Y. R. Hui, C. K. Lee, and F. Wu, “Electric springs— A new smart grid technology,” IEEE Trans. Smart Grid, Vol. 3, no 3, pp. 1552–1561, Sep; 2012. [CrossRef] [Google Scholar]
  3. S. C. Tan, C. K. Lee, and S. Y. R. Hui, “General steady-state analysis and control principle of electric springs with active and reactive power compensation,” IEEE Trans. Power Electron., Vol. 28, No. 8, pp 3958-p. 3969, Aug. 2013. [CrossRef] [Google Scholar]
  4. S. Yan, S. C. Tan, C. K. Lee, B. Chaudhuri and S. Y. R. Hui, “Electric springs for reducing power imbalance in threephase power systems,” IEEE Trans. Power. Electron., Vol. 30, No. 7, pp 3601–3609, Jul 2015. [CrossRef] [Google Scholar]
  5. S. Yan, S. C. Tan, C. K. Lee, and S. Y. R. Hui, “Electric spring of power quality improvement,” in Proc. IEEE Appl. Power Electron. Conf Expo., 2014, pp. 2140–2147. [Google Scholar]
  6. C. K. Lee, and S. Y. R. Hui, “Reduction of energy storage requirements in future smart grid using electric springs,” IEEE Trans. Smart Grid Vol. 4, d, No. 3, pp. 1282–1288, Sep. 2013. [CrossRef] [Google Scholar]
  7. C. K. Lee, B. Chaudhuri, and S. Y. R. Hui, “Hardware and contr ol implementation of electric springs for stabilizing future smart grid with intermittent renewable energy sources,” IEEE J. Emerging Sel. Topics Power E lectron., vol. 1, no. 1, pp. 18–27, Mar 2013. [CrossRef] [Google Scholar]
  8. C. K. Lee, S. C. Tan, F. F. Wu, S. Y. R. Hui and B. Chaudhuri, “Use of Hooke’s law for stabilizing future smart grid— the electric spring concept, in Proc. IEEE Energy Convers. Cong Expo., 2013, pp 5253–5257. [Google Scholar]
  9. Parag Kanjiya, and Vinod Khadkikar, “Enhancing power quality and stability of future smart grid with intermittent renewable energy sources with using electric springs,” in Proc IEEE Int. Conf, on Renewable Energy Res. Appl., 2013, pp. 918–922. [Google Scholar]
  10. N. R. Chaudhuri, C. K. Lee, B. Chaudhuri and S. Y. R. Hui, “Dynamic Modeling of Electric Springs,” IEEE Trans. Smart Grid, vol. 5, no. 5, pp. 2450–2458, Sep 2014. [CrossRef] [Google Scholar]
  11. Q. Wang, M. Cheng, Z. Chen and Z. Wang, “Steady-state analysis of electric springs with a novel δ control” IEEE Trans. Power Electron, Vol. 30, No. 12.pp. 7159–7169, Dec.2015. [CrossRef] [Google Scholar]
  12. Z. Bai, X. Raun and Z. Zhang, “A Generic six-step direct PWM(SS-DPWM) scheme for current source converter,” IEEE Trans. Power Electron., vol. 25, no. 3, pp. 3958–3969, Mar. 2010. [Google Scholar]
  13. Y. Chen and K. Smedley, “Three-phase Boost-type grid-connected inverter,” IEEE Trans.Power electron., Vol. 23, No. 5 pp. 2301–2309, sep.2008. [CrossRef] [Google Scholar]
  14. N. Zhu, D. Xu, B. Wu, N. R. Zargari, M. Kazerani and F. Liu, “Common-mode voltage reduction methods for currentsource converters in medium-voltage drives,” IEEE Trans. Power Electron., Vol. 28, No. 2, pp. 995–1006, Feb. 2013. [CrossRef] [Google Scholar]
  15. Qingsong Wang, Ming Cheng, Yunlei Jiang. Harmonic suppression for critical loads using electric springs with current source inverters,” IEEE vol. 4, no. 4, pp. 1362–1369, 2016. [Google Scholar]
  16. B. Bahrani, A. Rufer, S. Kenzelman, and L.A.C. Lopes, “Vector control of single-phase voltage-source converter based on fictive-axis emulation,” IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 831–840, 2011. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.