Open Access
Issue |
E3S Web Conf.
Volume 472, 2024
International Conference on Renewable Energy, Green Computing and Sustainable Development (ICREGCSD 2023)
|
|
---|---|---|
Article Number | 01011 | |
Number of page(s) | 12 | |
Section | Smart and Energy Efficient Systems | |
DOI | https://doi.org/10.1051/e3sconf/202447201011 | |
Published online | 05 January 2024 |
- IEA. World Energy Investment 2019, Investing in our energy future. https://www.iea.org/reports/world-energy-investment-2019 [Google Scholar]
- International Partnership for Hydrogen and Fuel Cells in the Economy Country Updates. http://www.iphe.net/ [Google Scholar]
- M. Grubb, C. Okereke, J. Arima, V. Bosetti, Y. Chen, J. Edmonds, L. Sulistiawati, Introduction and framing, in IPCC (Ed.), Climate Change: Mitigation of Climate Change. Cambridge University Press (2022). DOI: 10.1017/9781009157926.003 [Google Scholar]
- Ammonia Industry. ThyssenKrupp’s green hydrogen and renewable ammonia value chain (2018). https://ammoniaindustry.com/thyssenkrupps-green-hydrogen-and-renewable-ammonia-value-chain/ [Google Scholar]
- H2FUTURE. Production of green hydrogen. (2019). http://www.h2future-project.eu/technology [Google Scholar]
- IEA. Global hydrogen demand by sector in the Net Zero Scenario, 2020-2030 [Chart]. IEA. License: CC BY 4.0 (2020). https://www.iea.org/data-and-statistics/charts/global-hydrogen-demand-by-sector-in-the-net-zero-scenario-2020-2030 [Google Scholar]
- M. Reuß, T. Grube, M. Robinius, D. Stolten, Applied Energy, 247, pp. 438–453 (2019). https://doi.org/10.1016/j.apenergy.2019.04.064 [CrossRef] [Google Scholar]
- IEA. Global hydrogen production by technology in the Net Zero Scenario, 2019-2030 [Chart]. IEA. License: CC BY 4.0 (2019). https://www.iea.org/data-and-statistics/charts/global-hydrogen-production-by-technology-in-the-net-zero-scenario-2019-2030 [Google Scholar]
- K. Nikolov, M. Streblau, Hydrogen Production Technologies — A comparative overview and future developments, in 22nd International Symposium on Electrical Apparatus and Technologies SIELA 2022. 1-4 June 2022, Bourgas, Bulgaria, (2022). [Google Scholar]
- D. J. Abbott, J. P. Bowers, S. R. James, The impact of natural gas composition variations on the operation of gas turbines for power generation, in the Future of Gas Turbine Technology 6th International Conference, pp. 1–10. Brussels, Belgium. (2012). https://gasgov-mst-files.s3.eu-west-1.amazonaws.com/s3fs-public/ggf/Impact%20of%20Natural%20Gas%20Composition%20-%20Paper0.pdf [Google Scholar]
- C. Wulf, P. Zapp, Assessment of system variations for hydrogen transport by liquid organic hydrogen carriers. International Journal of Hydrogen Energy, 43(22), pp. 11884–11895 (2018). https://doi.org/10.1016/j.ijhydene.2018.01.198 [CrossRef] [Google Scholar]
- R. Gerboni, E. Salvador, Hydrogen transportation systems: Elements of risk analysis. Energy, 34(12), pp. 2223–2229 (2009). [CrossRef] [Google Scholar]
- Element Energy. Hydrogen supply chain evidence base (prepared for the UK Department for Business, Energy & Industrial Strategy) (2018). https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/760479/H2_supply_chain_evidence_-_publication_version.pdf [Google Scholar]
- M. Z. Mehrizi, J. Abdi, M. Rezakazemi, E. Salehi, A review on recent advances in hollow spheres for hydrogen storage. Int. J. of Hyd. Energy. Advance online publication (2020). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.