Open Access
Issue
E3S Web Conf.
Volume 472, 2024
International Conference on Renewable Energy, Green Computing and Sustainable Development (ICREGCSD 2023)
Article Number 01020
Number of page(s) 15
Section Smart and Energy Efficient Systems
DOI https://doi.org/10.1051/e3sconf/202447201020
Published online 05 January 2024
  1. Min, H., Changlu, L., Yu, Y., Zhu, T., & Zhang, C. Comparison Study of Two Semi-Active Hybrid Energy Storage Systems for Hybrid Electric Vehicle Applications and Their Experimental Validation. Energies, 10, 1–20 (2017). https://doi.org/10.3390/EN10030279. [Google Scholar]
  2. Hu, J., Liu, D., Du, C., Yan, F., & Lv, C. Intelligent energy management strategy of hybrid energy storage system for electric vehicle based on driving pattern recognition. Energy, 198, 117298 (2020). https://doi.Org/10.1016/j.energy.2020.117298. [CrossRef] [Google Scholar]
  3. El-Batawy, S., & Morsi, W. Optimal Design of Community Battery Energy Storage Systems With Prosumers Owning Electric Vehicles. IEEE Transactions on Industrial Informatics, 14, 1920–1931 (2018). https://doi.org/10.1109/TII.2017.2752464. [CrossRef] [Google Scholar]
  4. Liu, J., Cao, S., Chen, X., Yang, H., & Peng, J. Energy planning of renewable applications in high-rise residential buildings integrating battery and hydrogen vehicle storage. Applied Energy, 281, 11603 (2021). https://doi.org/10.1016/j.apenergy.2020.116038. [Google Scholar]
  5. Zheng, C., Li, W., & Liang, Q. An Energy Management Strategy of Hybrid Energy Storage Systems for Electric Vehicle Applications. IEEE Transactions on Sustainable Energy, 9, 1880–1888 (2018). https://doi.org/10.1109/TSTE.2018.2818259. [CrossRef] [Google Scholar]
  6. El-Batawy, S., & Morsi, W. Optimal Design of Community Battery Energy Storage Systems With Prosumers Owning Electric Vehicles. IEEE Transactions on Industrial Informatics, 14, 1920–1931 (2018). https://doi.org/10.1109/TII.2017.2752464. [CrossRef] [Google Scholar]
  7. Li, X., Liang, J., Hou, Z., Zhang, W., Wang, Y., Zhu, Y., & Qian, Y. The design of a high-energy Li-ion battery using germanium-based anode and LiCoO2 cathode. Journal of Power Sources, 293, 868–875 (2015). https://doi.org/10.1016/J.JPOWSOUR.2015.06.031. [CrossRef] [Google Scholar]
  8. Chae, C., Noh, H., Lee, J., Scrosati, B., & Sun, Y. A High-Energy Li-Ion Battery Using a Silicon-Based Anode and a Nano-Structured Layered Composite Cathode. Advanced Functional Materials, 24 (2014). https://doi.org/10.1002/adfm.201303766. [Google Scholar]
  9. Wali, S., Hannan, M., Reza, M., Ker, P., Begum, R., Rahman, M., & Mansor, M. Battery storage systems integrated renewable energy sources: A biblio metric analysis towards future directions. Journal of energy storage, 35, 102296 (2021). https://doi.org/10.1016/J.EST.2021.102296. [CrossRef] [Google Scholar]
  10. Zheng, Y., Zhao, J., Song, Y., Luo, F., Meng, K., Qiu, J., & Hill, D. Optimal Operation of Battery Energy Storage System Considering Distribution System Uncertainty. IEEE Transactions on Sustainable Energy, 9, 1051–1060 (2018). https://doi.org/10.1109/TSTE.2017.2762364. [CrossRef] [Google Scholar]
  11. Lajara, R., Pérez-Solano, J., & Pelegrí-Sebastiá, J. Predicting the Batteries’ State of Health in Wireless Sensor Networks Applications. IEEE Transactions on Industrial Electronics, 65, 8936–8945 (2018). https://doi.org/10.1109/TIE.2018.2808925. [CrossRef] [Google Scholar]
  12. Gao, Y., Liu, K., Zhu, C., Zhang, X., & Zhang, D. Co-Estimation of State-of- Charge and State-of- Health for Lithium-Ion Batteries Using an Enhanced Electrochemical Model. IEEE Transactions on Industrial Electronics, 69, 2684–2696 (2022). https://doi.org/10.1109/TIE.2021.3066946. [CrossRef] [Google Scholar]
  13. Wang, Q., He, Y., Shen, J., Ma, Z., & Zhong, G. A unified modeling framework for lithium-ion batteries: An artificial neural network based thermal coupled equivalent circuit model approach. Energy, 138, 118–132 (2017). https://doi.org/10.1016/J.ENERGY.2017.07.035. [CrossRef] [Google Scholar]
  14. Dang, X., Li, Y., Kai, X., Xiru, W., Jiang, H., & Sun, H. Open-Circuit VoltageBased State of Charge Estimation of Lithium-ion Battery Using Dual Neural Network Fusion Battery Model. ElectrochimicaActa, 188, 356–366 (2016). https://doi.Org/10.1016/J.ELECTACTA.2015.12.001. [CrossRef] [Google Scholar]
  15. Hu, Y., Yurkovich, S., Guezennec, Y., & Yurkovich, B. (2011). Electro-thermal battery model identification for automotive applications. Journal of Power Sources, 196, 449–457. https://doi.Org/10.1016/J.JPOWSOUR.2010.06.037. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.