Open Access
Issue |
E3S Web Conf.
Volume 472, 2024
International Conference on Renewable Energy, Green Computing and Sustainable Development (ICREGCSD 2023)
|
|
---|---|---|
Article Number | 03008 | |
Number of page(s) | 13 | |
Section | Sustainable Development | |
DOI | https://doi.org/10.1051/e3sconf/202447203008 | |
Published online | 05 January 2024 |
- Vinod Puri, Nikhil Kumar, “Wind energy forecasting using artificial neural network in Himalayan region,” Modeling Earth Systems and Environment, vol. 8, pp. 59–68, 2022. [CrossRef] [Google Scholar]
- Amirat Y., Benbouzid M.E.H., “Survey paper generators for wind energy conversion systems: state of the art and coming attractions,” J Electr Syst, vol. 3, pp. 26–38, 2007. [Google Scholar]
- Taylor, James W., Patrick E. McSharry, and Roberto Buizza. “Wind power density forecasting using ensemble predictions and time series [Google Scholar]
- models”. IEEE Transactions on Energy Conversion 24.3 (2009): 775–782. [CrossRef] [Google Scholar]
- Essandoh E.O. (2012) Wind data collection and analysis in Kumasi. PhD thesis, Kwame Nkrumah University of Science and Technology [Google Scholar]
- Alawaji S.H., Eugenio N.N., Elani U.A. (1996) “Wind energy resource assessment in Saudi Arabia: part II: data collection and analysis”. Renew Energy 9: 818–821 [CrossRef] [Google Scholar]
- Potter C.W., Negnevitsky M. (2006) Very short-term wind forecasting for Tasmanian power generation. IEEE Trans Power Syst 21: 965–972 [CrossRef] [Google Scholar]
- Yang H.X., Lu L., Burnett J. (2003) “Weather data and probability analysis of hybrid photovoltaic-wind power generation systems in Hong Kong”. Renew Energy 28: 1813–1824 [CrossRef] [Google Scholar]
- Hasche B., Keane A., O’Malley M. (2011) Capacity value of wind power, calculation, and data requirements: the Irish power system case. IEEE Trans Power Syst 26: 420–430 [CrossRef] [Google Scholar]
- Weisser D. (2003) A wind energy analysis of Grenada: an estimation using the ‘Weibull’ density function. Renew Energy 28: 1803–1812 [CrossRef] [Google Scholar]
- Kassemy G.H., Zeitoun M. (2019) Modeling of techno-economic assessment on wind energy potential at three selected coastal regions in Lebanon. Model Earth Syst Environ 5(3): 1037–1049 [CrossRef] [Google Scholar]
- Khan M.A., Cyimur H., Kassem Y. (2019) Modeling predictive assessment of wind energy potential as a power generation source at some selected locations in Pakistan. Model Earth Syst Environ 5(2): 555–569 [CrossRef] [Google Scholar]
- ul Haq M.A., Chand S., Sajjad M.Z., Usman R.M. (2020) Evaluating the suitability of two parametric wind speed distributions: a case study from Pakistan. Model Earth Syst Environ 24: 1–9 [Google Scholar]
- Amarasinghe A.G., Perera E.N. (2020) Modeling predictive suitability to determine potential areas for establishing wind power plants in Sri Lanka. Model Earth Syst Environ 13: 1–2 [Google Scholar]
- Osinowo A.A., Okogbue E.C., Eresanya E.O., Akande O.S. (2017) Evaluation of wind potential and its trends in the mid-Atlantic. Model Earth Syst Environ 3(4): 1199–1213 [CrossRef] [Google Scholar]
- Biswas S., Sinha M. (2020) Performances of deep learning models for Indian Ocean wind speed prediction. Model Earth Syst Environ 19: 1–23 [Google Scholar]
- Naderi F.M., Freilich M.H., Long D.G. (1991) Spaceborne radar measurement of wind velocity over the ocean-an overview of the NSCAT scatter-meter system. Proc IEEE 79: 850–866 [CrossRef] [Google Scholar]
- Bludszuweit H., Dom’mguez-Navarro J.A., Llombart, A. (2008) Statis- tical analysis of wind power forecast error. IEEE Trans Power Syst 23: 983–991 [CrossRef] [Google Scholar]
- Kellogg W.D., Nehrir M.H., Venkataramanan G., Gerez V. (1998) Generation unit sizing and cost analysis for stand-alone wind, photovoltaic, and hybrid wind/PV systems. IEEE Trans Energy Convers 13: 70–75 [CrossRef] [Google Scholar]
- Borowy B.S., Salameh Z.M. (1997) Dynamic response of a stand-alone wind energy conversion system with battery energy storage to a wind gust. IEEE Trans Energy Convers 12: 73–78 [CrossRef] [Google Scholar]
- Karki R., Billinton R. (2004) Cost-effective wind energy utilization for reliable power supply. IEEE Trans Energy Convers 19: 435–440 [CrossRef] [Google Scholar]
- Keane A., Milligan M., Dent C.J., Hasche B., D’Annunzio C., Dragoon K., Holttinen H., Samaan N., Soder L., O’Malley M. (2011) Capacity value of wind power. IEEE Trans Power Syst 26: 564–572 [CrossRef] [Google Scholar]
- Amirat Y., Benbouzid M.E.H. (2007) Survey paper generators for wind energy conversion systems: state of the art and coming attractions. J Electr Syst 3: 26–38 [Google Scholar]
- Koutroulis E., Kalaitzakis K. (2006) Design of a maximum power tracking system for wind-energy-conversion applications. IEEE Trans Industr Electron 53: 486–494 [CrossRef] [Google Scholar]
- Datta R., Ranganathan V.T. (2003) “A method of tracking the peak power points for a variable speed wind energy conversion system”. IEEE Trans Energy Convers 18: 163–168 [CrossRef] [Google Scholar]
- Potter C.W., Negnevitsky M. (2006) Very short-term wind forecasting for Tasmanian power generation. IEEE Trans Power Syst 21: 965–972. [CrossRef] [Google Scholar]
- Taylor J.W., McSharry P.E., Buizza R. (2009) Wind power density forecasting using ensemble predictions and time series models. IEEE Trans Energy Convers 24: 775–782 [CrossRef] [Google Scholar]
- Grassi, Giuseppe, and Pietro Vecchio. “Wind energy prediction using a two-hidden layer neural network.” Communications in Nonlinear Science and Numerical Simulation 15.9 (2010): 2262–2266. [CrossRef] [Google Scholar]
- Okumus, Inci, and Ali Dinler. “Current status of wind energy forecasting and a hybrid method for hourly predictions.” Energy Conversion and Management 123 (2016): 362–371. [CrossRef] [Google Scholar]
- Celik, Ali N., and Mohan Kolhe. “Generalized feed-forward based method for wind energy prediction.” Applied Energy 101 (2013): 582–588. [CrossRef] [Google Scholar]
- Zhang, Yagang, Ruixuan Li, and Jinghui Zhang. “Optimization scheme of wind energy prediction based on artificial intelligence.” Environmental Science and Pollution Research 28 (2021): 39966–39981. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.