Open Access
Issue |
E3S Web Conf.
Volume 475, 2024
InCASST 2023 - The 1st International Conference on Applied Sciences and Smart Technologies
|
|
---|---|---|
Article Number | 02012 | |
Number of page(s) | 13 | |
Section | Environmental Impact Assessment and Management | |
DOI | https://doi.org/10.1051/e3sconf/202447502012 | |
Published online | 08 January 2024 |
- UNESCO, Indonesian Batik (2009) [Google Scholar]
- Kristina, Hari Batik Nasional (2021) [Google Scholar]
- C. Irawan, E.N. Ardyastiti, D.R.I.M. Setiadi, E.H. Rachmawanto, C.A. Sari, Effect of the Number of GLCM Features on Classification Accuracy of Lasem Batik Images using K-Nearest Neighbor, in Research of Information Technology and Intelligent System, 33-36 (2019) [Google Scholar]
- S. Alam, Batik Mendunia, Ajak Milenial Mengetahuinya (2021) [Google Scholar]
- H.S. Khamis, K.W. Cheruiyot, S. Kimani, Application of k-Nearest Neighbour Classification in Medical Data Mining, in International Journal of Information and Communication Technology Research, 4, 121-128 (2014) [Google Scholar]
- S.B. Imandoust, M. Bolandraftar, Application of K-Nearest Neighbor (KNN) Approach for Predicting Economic Event, in International Seminar on Journal of Engineering Research and Applications, 3, 605-610 (2013) [Google Scholar]
- J.W. Yodha, A.W. Kurniawan, Perbandingan Penggunaan Deteksi Tepi Dengan Metode Laplace, Sobel, dan Prewit dan Canny Pada Pengenalan Pola, in Techno.COM, 13, 189-197. (2014) [Google Scholar]
- W. Wahyono, I.N.P. Trisna, S.L. Sariwening, M. Fajar, D. Wijayanto, Perbandingan penghitungan jarak pada k-nearest neighbour dalam klasifikasi data tekstual, in Jurnal Teknologi dan Sistem Komputer, 8, 54-58 (2020) [Google Scholar]
- Setiohardjo, N. M. dan Harjoko, A., 2014, Analisis Tekstur untuk Klasifikasi Motif Kain (Studi Kasus Kain Tenun Nusa Tenggara Timur), Indonesian Journal of Computing and Cybernetics Systems, 8, 177-188. [Google Scholar]
- Z. Musiafa, Perancangan Ekstraksi Fitur Motif Sasaringan Menggunakan Algoritma Naïve Bayes Berbasis Color Histogram dan GLCM, in Technologia, 8, 108-117 (2017) [Google Scholar]
- P. Mohanaiah, P. Sathyanarayana, L. GuruKumar, Image Texture Feature Extraction Using GLCM Approach, in Internasional Journal of Scientific and Research Publications, 3, 2250-3153 (2013) [Google Scholar]
- J. Wahyudi, I. Maulida, Pengenalan Pola Citra Kain Tradisional Menggunakan GLCM dan KNN, in Jurnal Teknologi Informasi Universitas Lambung Mangkurat, 4, 43-48 (2019) [Google Scholar]
- Y. Kusumawati, A. Susanto, I.U.W. Mulyono, D.P. Prabowo, Klasifikasi Batik Kudus Berdasarkan Pola Menggunakan KNN dan GLCM, in Prosiding Semniar Nasional Lembaga Penelitian dan Pengabdian Masyarakat Universitas Muhammadiyah Purwokerto, 2, 464-469 (2020) [Google Scholar]
- R. Andrian, M.A. Naufal, B. Hermanto, A. Junaidi, F.R. Lumbanraja, KNN Classification for Recognition of the Batik Lampung Motifs, in Journal of Physics: Conference Series, 1338, 1-6 (2019) [Google Scholar]
- Z.Y. Lamasigi, DCT Untuk Ekstraksi Fitur Berbasis GLCM pada Identifikasi Batik Menggunakan KNN, in Jambura Journal of Electrical and Electronics Engineering, 3, 1-6 (2021) [Google Scholar]
- C. Jatmoko, D. Sinaga, Ekstraksi Fitur GLCM pada KNN Dalam Mengklasifikasi Motif Batik, in Prosiding SENDI_U, (2019) [Google Scholar]
- Y. Ganis K., I. Santoso, R.R. Isnanto, , Klasifikasi Citra Dengan GLCM Pada Lima Kelas Biji-Bijian, in Skripsi on Fakultas Teknik, Universitas Diponegoro (2011) [Google Scholar]
- D.P. Pamungkas, Ekstraksi Citra menggunakan Metode GLCM dan KNN untuk Indentifikasi Jenis Anggrek, in Innovation in Research of Informatics, 1, 51-56 (2019) [Google Scholar]
- W.K. Oktalao, I.D.M.B.A. Darmawan, I.W. Santiyasa, I.P.G.H. Suputra, I.G.N.A.C. Putra, Klasifikasi Motif Kain Tradisional Cepuk Menggunakan GLCM dan KNN, in Jurnal Elektronik Ilmu Komputer Udayana, 11, 545-552 (2023) [Google Scholar]
- L. Hakim, S.P. Kristanto, D. Yusuf, F.N. Afia, Pengenalan Motif Batik Banyuwangi Berdasarkan Fitur Gray Level Co-Occurrence Matrix, in Jurnal TEKNOINFO, 16, 1-7 (2022) [Google Scholar]
- J. Nelson, What is Image Preprocessing and Augmentation?,(2020) [Google Scholar]
- A. Fredrick, Getting Started with Image Preprocessing in Python (2021) [Google Scholar]
- D. Marlina, N.F. Putri, A. Fernando, A. Ramadhan, Implementasi Algoritma K-Medoids dan K-Means unuk Pengelompokkan Wilayah Sebaran Cacat pada Anak, in Jurnal CoreIT, 2, 64-71 (2018) [Google Scholar]
- A. Kharwal, StandardScaler in Machine Learning (2020) [Google Scholar]
- A.P. Wibawa, M.G.A. Purnama, M.F. Akbar, F.A. Dwiyanto, Metode-metode Klasifikasi, in Prosiding Seminar Ilmu Komputer dan Teknologi Informasi, 3, 134-138 (2018) [Google Scholar]
- Suyanto, Machine Learning Tingkat Dasar dan Lanjut (2018) [Google Scholar]
- M. Nishom, Perbandingan Akurasi Euclidean Distance, Minkowski Distance, dan Manhattan Distance pada Algoritma K-Means Clustering berbasis Chi-Square, in Jurnal Informatika: Jurnal Pengembangan IT, 4, 20-24 (2019) [Google Scholar]
- A. Pamungkas, Ekstraksi Ciri Citra Grayscale (2017) [Google Scholar]
- R.A. Surya, A. Fadlil, A. Yudhana, Ekstraksi Ciri Metode GLCM dan Filter Gabor Untuk Klasifikasi Citra Batik Pekalongan, in Jurnal Informatika: Jurnal Pengembangan IT, 2, 23-26 (2017) [Google Scholar]
- W.I. Praseptiyana, A.W. Widodo, M.A. Rahman, Pemanfaatan Ciri GLCM Untuk Deteksi Melasma Pada Citra Wajah, in Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 3, 10402-10409 (2019) [Google Scholar]
- Softcients, Ciri Fitur dengan GLCM (2021) [Google Scholar]
- S. Narkhede, Understanding Confusion Matrix (2018) [Google Scholar]
- J. Mohajon, Confusion Matrix for Your Multi-Class Machine Learning Model (2020) [Google Scholar]
- M. Sanjay, Why and how to Cross Validate a Model? (2018) [Google Scholar]
- Y. Widyaningsih, G.P. Arum, K. Prawira, Aplikasi K-Fold Cross Validation Dalam Penentuan Model Regresi Binomial Negatif Terbaik, in Jurnal Ilmu Matematika dan Terapan, 15, 315-322 (2021) [Google Scholar]
- J. Brownlee, A Gentle Introduction to k-fold Cross-Validation (2018) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.