Open Access
Issue |
E3S Web Conf.
Volume 475, 2024
InCASST 2023 - The 1st International Conference on Applied Sciences and Smart Technologies
|
|
---|---|---|
Article Number | 02017 | |
Number of page(s) | 9 | |
Section | Environmental Impact Assessment and Management | |
DOI | https://doi.org/10.1051/e3sconf/202447502017 | |
Published online | 08 January 2024 |
- B. Battseren, S. H. Mohamed, A. O. A. Diego, S. Saleh, and W. Hardt, Tree Detection and Localization Approach for UAV-based Forest Inspection, in Embedded Selforganising Systems, vol. 9, no. 3, pp. 73–81, (2022) [Google Scholar]
- A. Al-Kaff, D. Martin, F. Garcia, A. de la Escalera, and J. M. Armingol, Survey of Computer Vision Algorithms and Applications for Unmanned Aerial Vehicles, in Expert Syst Appl, vol. 92, pp. 447–463, (2018) [Google Scholar]
- M. S. Khatami, Deteksi Kendaraan Menggunakan Algoritma You Only Look Once (Yolo) V3, (2022) [Google Scholar]
- L. Rajasekar, D. Sharmila, M. Rameshkumar, and B. S. Yuwaraj, Performance Analysis of Fruits Classification System Using Deep Learning Techniques, in Advances in Machine Learning and Computational Intelligence: Proceedings of ICMLCI, Springer, 2021, pp. 293–301, (2019) [Google Scholar]
- C.-Y. Chiang, C. Barnes, P. Angelov, and R. Jiang, Deep Learning-Based Automated Forest Health Diagnosis From Aerial Images, in IEEE Access, vol. 8, pp. 144064–144076, (2020) [Google Scholar]
- T.-Y. Lin et al., Microsoft coco: Common objects in context, in Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, Springer, pp. 740–755, (2014) [Google Scholar]
- A. Krizhevsky, CIFAR dataset. Accessed: Sep. 23, 2023. [Online]. Available: https://www.cs.toronto.edu/~kriz/cifar.html (2023) [Google Scholar]
- S. Rath, Yolov8 Ultralytics: State-of-the-Art Yolo Models, (2023) [Google Scholar]
- A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, Yolov4: Optimal Speed and Accuracy of Object Detection, arXiv preprint arXiv:2004.10934, (2020) [Google Scholar]
- J. Redmon and A. Farhadi, Yolov3: An Incremental Improvement, arXiv preprint arXiv:1804.02767, (2018) [Google Scholar]
- D.-J. Shin and J.-J. Kim, A Deep Learning Framework Performance Evaluation to Use Yolo in NVIDIA Jetson Platform, in Applied Sciences, vol. 12, no. 8, p. 3734, (2022) [Google Scholar]
- J. Terven and D. Cordova-Esparza, A comprehensive review of YOLO: From YOLOv1 to YOLOv8 and Beyond, arXiv preprint arXiv:2304.00501, (2023) [Google Scholar]
- G. Li, Z. Song, and Q. Fu, A New Method of Image Detection for Small datasets under the framework of YOLO network,” in 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), IEEE, pp. 1031–1035, (2018) [Google Scholar]
- D. Ahmed, R. Sapkota, M. Churuvija, and M. Karkee, Machine Vision-Based Crop-Load Estimation Using YOLOv8, arXiv preprint arXiv:2304.13282, (2023) [Google Scholar]
- M. Shaloo, G. Princz, and S. Erol, Real-Time Color Detection for Automated Production Lines Using CNN-Based Machine Learning, in International Symposium on Industrial Engineering and Automation, Springer, pp. 167–181, (2023) [Google Scholar]
- X. Liu, D. Zhao, W. Jia, W. Ji, and Y. Sun, A Detection Method for Apple Fruits Based on Color and Shape Features, in IEEE Access, vol. 7, pp. 67923–67933, ( 2019) [Google Scholar]
- J. A. J. Eikelboom et al., Improving the Precision and Accuracy of Animal Population Estimates with Aerial Image Object Detection, Methods Ecol Evol, vol. 10, no. 11, pp. 1875–1887,(2019) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.