Open Access
Issue
E3S Web Conf.
Volume 476, 2024
The 4th Aceh International Symposium on Civil Engineering (AISCE 2023)
Article Number 01015
Number of page(s) 13
DOI https://doi.org/10.1051/e3sconf/202447601015
Published online 17 January 2024
  1. D.K. Syahbana, K. Kasbani, G. Suantika, O. Prambada, A. S. Andreas, U. B. Saing, S. L. Kunrat et al. The 2017-19 activity at Mount Agung in Bali (Indonesia): Intense unrest, monitoring, crisis response, evacuation, and eruption, Sci. Rep., 9, 8848 (2019) [CrossRef] [Google Scholar]
  2. P. Cui, X. Chen, Y. Waqng, K. Hu, and Y. Li, Jiangjia Ravine debris flows in southwestern China, Springer: in Debris-flow hazards and related phenomena, 565 (2005) [CrossRef] [Google Scholar]
  3. M.I. Rosli, F. Che Ros, K.A. Razak, S. Ambran, S.A. Kamarudin, A. Nor Anuar, A. Marto, T. Tobita, Y. Ono, Modelling debris flow runout: a case study on the Mesilau Watershed, Kundasang, Sabah. Water, 13 (19), 2667 (2021) [CrossRef] [Google Scholar]
  4. M. Syarifuddin, S. Oishi, D. Legono, R.I. Hapsari, and M. Iguchi, Integrating X-MP radar data to estimate rainfall-induced debris flow in the Merapi volcanic area, Advances in water res., 110, 249 (2017) [CrossRef] [Google Scholar]
  5. F. Lavigne and J.C. Thouret, Sediment transportation and deposition by rain-triggered lahars at Merapi Volcano, Central Java, Indonesia, Geomorphology, 49(2), 45 (2003) [CrossRef] [Google Scholar]
  6. J.S. Wu, L.Q. Tian, Z.C. Kang, S.C. Zhang, and J. Liu, Debris flow and its comprehensive control (Science Press, Beijing, 1993) [Google Scholar]
  7. T. Takahashi, Debris flow, mechanics, prediction and countermeasures (ed. 1, Taylor & Francis/Balkema, 2007) [Google Scholar]
  8. C. Gregoretti and G.D. Fontana, The triggering of debrisflow due to channel-bed failure in some alpine headwater basins of the dolomites: analyses of critical runoff, Hydrological Processes: An International Journal, 22(13), p. 2248 (2007) [Google Scholar]
  9. HEC., HEC-RAS 2D user’s manual v6.1, https://www.hec.usace.army.mil/confluence/rasdocs/r2dum/latest (accessed on 22 February 2022) [Google Scholar]
  10. M. Berti, M. Bernard, C. Gregoretti, and A. Simoni, Physical interpretation of rainfall thresholds for runoff-generated debris flows, Journal of Geophysical Research: Earth Surface, 125(6), e2019JF005513 (2020) [CrossRef] [PubMed] [Google Scholar]
  11. V.T. Chow, D.R. Maidment, and L.W. Mays, Applied Hydrology (McGraw-Hill Book Company, 1988) [Google Scholar]
  12. H. Huang, J. Gallichand, Z. Wang, and M. Goulet, A modification to the soil conservation services curve number method for steep slopes in the Loess Plateau of China, Hydrological Pro., 20, 579 (2006) [CrossRef] [Google Scholar]
  13. V. Garg, B.R. Nikam, P.K. Thakur, and S.P. Aggarwal, Assessment of the effect of slope on runoff potential of a watershed using NRCS-CN method, International Journal of Hydrology Science and Technology, 3 (2), 141 (2013) [CrossRef] [Google Scholar]
  14. R. Andaru, J.Y. Rau, D.K. Syahbana, A.S. Prayoga, and H.D. Purnamasari, The use of UA V remote sensing for observing lava dome emplacement and areas ofpotential lahar hazards: An example from the 2017-2019 eruption crisis at Mount Agung in Bali. Journal of Volcanology and Geothermal Research, 415, 107255 (2021) [CrossRef] [Google Scholar]
  15. Badan Informasi Geospasial, Peta Kemiringan Lereng Provinsi Bali, https://www.indonesia-geospasial.com/ (accessed 1 July 2022) [Google Scholar]
  16. Badan Informasi Geospasial, Digital Elevation Model Nasional, https://tanahair.indonesia.go.id/demnas/#/ (accessed 1 July 2022) [Google Scholar]
  17. BWS Bali-Penida, Perencanaan teknis prasarana pengendalian lahar Gunung Agung di Kabupaten Karangasem (2016) [Google Scholar]
  18. BWS Bali-Penida, Laporan pengukuran topografi mutual check (MC-0) Tukad Yeh Sah, Pekerjaan pengendalian banjir Sungai Unda (2020) [Google Scholar]
  19. Badan Informasi Geospasial, Tutupan Lahan 2019, https://www.indonesia-geospasial.com/ (accessed 1 July 2022) [Google Scholar]
  20. Food and Agriculture Organization of United Nation, FAO Soils Portal-Harmonized World Soil Database v 1.2, https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (accessed 1 July 2022) [Google Scholar]
  21. Badan Standarisasi Nasional, SNI 2515:2016 - Tata cara perhitungan debit banjir rencana (Jakarta, 2016) [Google Scholar]
  22. Balai Teknik Bendungan, Petunjuk Teknis Perhitungan Debit Banjir Bendungan, (Jakarta, 2017) [Google Scholar]
  23. Soil Conservation Service (SCS), SCS National Engineering Handbook, Hydrology (US Department of Agriculture, 1972) [Google Scholar]
  24. G. Sobhani, A review of selected small watershed design methods for possible adoption to Iranian conditions (MS thesis, Utah State University, Logan, UT, 1975) [Google Scholar]
  25. A.N. Sharpley and J.R. Williams, EPIC - Erosion/productivity impact calculator: 1. Model documentation, US Department of Agriculture Technical Bulletin, 1768, US Government Printing Office, Washington, DC (1990) [Google Scholar]
  26. R.H. Hawkins, Jr. A.T. Hjelmfelt, and A.W. Zevenbergen, Runoff prob., storm depth and curve numbers, Journal of Irrigation and Dra. Eng. (ASCE), 111 (4), 330 (1985) [Google Scholar]
  27. S.K. Mishra, M.K. Jain, P. Suresh Babu, K. Venugopal, and S. Kaliappan, Comparison of AMC-dependent CN-conversion formulae, Water Res. Man., 22(10), 1409 (2008) [CrossRef] [Google Scholar]
  28. JICA. Tech. standards and guidelines for planning and design of sabo structures (2010) [Google Scholar]
  29. S. Gibson, I. Floyd, A. Sánchez, and R. Heath, Comparing single-phase, non-Newtonian approaches with experimental results: Validating flume-scale mud and debris flow in HEC-RAS. Earth Surface Processes and Landforms, 46(3), 540 (2021) [CrossRef] [Google Scholar]
  30. I.E. Floyd, S. Gibson, R. Heath, M. R. Villanueva, and N. Pradhan, Development of debris lib. and 1D HEC-RAS and 2D adaptive hydraulics Linkage-Architecture for predicting post-wildfire non-newtonian flows. Proc. of the Fed. Int. SEDHYD, 24 (2019) [Google Scholar]
  31. S. Gibson, L.Z. Moura, C. Ackerman, N. Ortman, R. Amorim, I. Floyd, M. Eom, C. Creech, and A. Sánchez, Prototype scale evaluation of non-newtonian algorithms in HEC-RAS: mud and debris flow case studies of Santa Barbara and Brumadinho, Geosciences, 134 (2022) [CrossRef] [Google Scholar]
  32. I.E. Floyd, A. Sanchez, S. Gibson, and G.A. Savant, Modular, non-newtonian, model, library framework (DebrisLib) for post-wildfire flood risk management. Hydrology and Earth System Sci. Disc, 1 (2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.