Open Access
Issue
E3S Web Conf.
Volume 476, 2024
The 4th Aceh International Symposium on Civil Engineering (AISCE 2023)
Article Number 01038
Number of page(s) 17
DOI https://doi.org/10.1051/e3sconf/202447601038
Published online 17 January 2024
  1. A. Milad et al., “A Comparative Review of Hot and Warm Mix Asphalt Technologies from Environmental and Economic Perspectives: Towards a Sustainable Asphalt Pavement,” IJERPH, vol. 19, no. 22, p. 14863, Nov. 2022, DOI: 10.3390/ijerph192214863. [CrossRef] [Google Scholar]
  2. B. D. Prowell, G. C. Hurley, P.E., and B. Frank, Warm-Mix Asphalt: Best Practices, 3rd Edition. National Asphlt Pavement Assosiation, 2012. [Google Scholar]
  3. M. Zaumanis, “Warm Mix Asphalt,” in Climate Change, Energy, Sustainability and Pavements, K. Gopalakrishnan, W. J. Steyn, and J. Harvey, Eds., in Green Energy and Technology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 309–334. DOI: 10.1007/978-3-662-44719-2_10. [CrossRef] [Google Scholar]
  4. A. Chowdhury and J. W. Button, “A Review of Warm Mix Asphalt,” Texas Transportation Institute Texas A&M University System College Station, Texas, SWUTC/08/473700-00080-1, 2008. [Google Scholar]
  5. Z. Gao, H. Fu, Q. Chen, and Y. Cao, “Rheological properties and viscosity reduction mechanism of SBS warm-mix modified asphalt,” Petroleum Science and Technology, vol. 38, no. 6, pp. 556–564, Mar. 2020, DOI: 10.1080/10916466.2020.1772820. [CrossRef] [Google Scholar]
  6. P. Georgiou and A. Loizos, “Characterization of Sustainable Asphalt Mixtures Containing High Reclaimed Asphalt and Steel Slag,” Materials, vol. 14, no. 17, p. 4938, Aug. 2021, DOI: 10.3390/ma14174938. [CrossRef] [PubMed] [Google Scholar]
  7. P. Guo, Y. Feng, W. Wei, L. He, and B. Tang, “Adhesion of Warm-Mix Recycled Asphalt Aggregate Mixtures Based on Surface Free Energy Theory,” J. Mater. Civ. Eng., vol. 31, no. 10, p. 04019209, Oct. 2019, DOI: 10.1061/(ASCE)MT.1943-5533.0002802. [CrossRef] [Google Scholar]
  8. J. Luo et al., “Physical, Rheological, And Microsurface Characteristics of High-Viscosity Binder Modified with WMA Agents,” Advances in Materials Science and Engineering, vol. 2022, pp. 1–12, Mar. 2022, DOI: 10.1155/2022/5098250. [CrossRef] [Google Scholar]
  9. A. Kavussi and L. Hashemian, “Laboratory evaluation of moisture damage and rutting potential of WMA foam mixes,” International Journal of Pavement Engineering, vol. 13, no. 5, pp. 415–423, Oct. 2012, DOI: 10.1080/10298436.2011.597859. [CrossRef] [Google Scholar]
  10. Z. You, D. Porter, X. Yang, and H. Yin, “Preliminary Laboratory Evaluation of Methanol Foamed Warm Mix Asphalt Binders and Mixtures,” J. Mater. Civ. Eng., vol. 29, no. 11, p. 06017017, Nov. 2017, DOI: 10.1061/(ASCE)MT.1943-5533.0002085. [CrossRef] [Google Scholar]
  11. X. Shu, B. Huang, E. D. Shrum, and X. Jia, “Laboratory evaluation of moisture susceptibility of foamed warm mix asphalt containing high percentages of RAP,” Construction and Building Materials, vol. 35, pp. 125–130, Oct. 2012, DOI: 10.1016/j.conbuildmat.2012.02.095. [CrossRef] [Google Scholar]
  12. K. A. Ghuzlan and M. O. Al Assi, “Sasobit-Modified Asphalt Binder Rheology,” J. Mater. Civ. Eng., vol. 29, no. 9, p. 04017142, Sep. 2017, DOI: 10.1061/(ASCE)MT.1943-5533.0001996. [CrossRef] [Google Scholar]
  13. J. Gong et al., “Laboratory evaluation of warm-mix epoxy SBS modified asphalt binders containing Sasobit,” Journal of Building Engineering, vol. 32, p. 101550, Nov. 2020, DOI: 10.1016/j.jobe.2020.101550. [CrossRef] [Google Scholar]
  14. M. Rezaeizadeh Herozi, W. Valenzuela, A. Rezagholilou, A. Rigabadi, and H. Nikraz, “New Models for the Properties of Warm Mix Asphalt with Sasobit,” CivilEng, vol. 3, no. 2, pp. 347–364, Apr. 2022, DOI: 10.3390/civileng3020021. [CrossRef] [Google Scholar]
  15. M. O. Hamzah, S. R. Omranian, and B. Golchin, “A Review on the Effects of Aging on Properties of Asphalt Binders and Mixtures,” 2015. [Google Scholar]
  16. H. Wang, X. Liu, P. Apostolidis, and T. Scarpas, “Review of warm mix rubberized asphalt concrete: Towards a sustainable paving technology,” Journal of Cleaner Production, vol. 177, pp. 302–314, Mar. 2018, DOI: 10.1016/j.jclepro.2017.12.245. [CrossRef] [Google Scholar]
  17. M. Sukhija and N. Saboo, “A comprehensive review of warm mix asphalt mixtureslaboratory to field,” Construction and Building Materials, vol. 274, p. 121781, Mar. 2021, DOI: 10.1016/j.conbuildmat.2020.121781. [CrossRef] [Google Scholar]
  18. R. Ghabchi, S. Rani, M. Zaman, and S. A. Ali, “Effect of WMA additive on properties of PPA-modified asphalt binders containing anti-stripping agent,” International Journal of Pavement Engineering, vol. 22, no. 4, pp. 418–431, Mar. 2021, DOI: 10.1080/10298436.2019.1614584. [CrossRef] [Google Scholar]
  19. H. F. Haghshenas, Y.-R. Kim, M. D. Morton, T. Smith, M. Khedmati, and D. F. Haghshenas, “Effect of Softening Additives on the Moisture Susceptibility of Recycled Bituminous Materials Using Chemical-Mechanical-Imaging Methods,” J. Mater. Civ. Eng., vol. 30, no. 9, p. 04018207, Sep. 2018, DOI: 10.1061/(ASCE)MT.1943-5533.0002405. [CrossRef] [Google Scholar]
  20. J. Yu, C. Xiong, X. Zhang, Z. Ge, and G. An, “Assessing Moisture Sensitivity of Rubberized Warm Mix Asphalt Mixtures Using the Surface Free Energy Method and Dynamic Water Pressure Tester,” J. Test. Eval., vol. 46, no. 2, p. 20170241, Mar. 2018, DOI: 10.1520/JTE20170241. [CrossRef] [Google Scholar]
  21. S. R. Omranian, M. O. Hamzah, G. S. Mounik, K. P. Reddy, Y. M. Kapadia, and S. Y. Teh, “Laboratory investigation on warm mix asphalt incorporating organo-silane additive,” IOP Conf. Ser.: Earth Environ. Sci., vol. 463, no. 1, p. 012068, Mar. 2020, DOI: 10.1088/1755-1315/463/1/012068. [CrossRef] [Google Scholar]
  22. H. Luo et al., “Low-temperature cracking resistance, fatigue performance and emission reduction of a novel silica gel warm mix asphalt binder,” Construction and Building Materials, vol. 231, p. 117118, Jan. 2020, DOI: 10.1016/j.conbuildmat.2019.117118. [CrossRef] [Google Scholar]
  23. G. C. Hurley and B. D. Prowell, “EVALUATION OF EVOTHERM® FOR USE IN WARM MIX ASPHALT,” National Center for Asphalt Technology, Alabama, NCAT Report 06-02, 2006. [Google Scholar]
  24. Y. Kuang, “Evaluation of Evotherm as a WMA technology compaction and anti-strip additive,” Iowa State University, Ames, Iowa, 2012. [Google Scholar]
  25. M. Bazzaz, M. K. Darabi, D. N. Little, and N. Garg, “Effect of Evotherm-M1 on Properties of Asphaltic Materials Used at NAPMRC Testing Facility,” J. Test. Eval., vol. 48, no. 3, p. 20190446, May 2020, DOI: 10.1520/JTE20190446. [CrossRef] [Google Scholar]
  26. R. Li, N. Shao, J. Yue, and B. Liang, “Research on the Influence of Different Warm-Mix Modifiers on Pavement Performance of Bitumen and Its Mixture,” Applied Sciences, vol. 13, no. 2, p. 955, Jan. 2023, DOI: 10.3390/app13020955. [CrossRef] [Google Scholar]
  27. H. Xu et al., “Investigation into Rheological Behavior of Warm-Mix Recycled Asphalt Binders with High Percentages of RAP Binder,” Materials, vol. 16, no. 4, p. 1599, Feb. 2023, DOI: 10.3390/ma16041599. [CrossRef] [PubMed] [Google Scholar]
  28. E. Turbay, G. Martinez-Arguelles, T. Navarro-Donado, E. Sánchez-Cotte, R. Polo-Mendoza, and E. Covilla-Valera, “Rheological Behaviour of WMA-Modified Asphalt Binders with Crumb Rubber,” Polymers, vol. 14, no. 19, p. 4148, Oct. 2022, DOI: 10.3390/polym14194148. [CrossRef] [PubMed] [Google Scholar]
  29. S. I. A. Ali, D. Alothman, and H. Gökçekuş, “Rheological Performance of ZycoTherm/Nano- Silica Composite Modified Binders at High and Low Temperatures,” Turkish Journal of Civil Engineering, vol. 34, no. 2, pp. 77–102, Mar. 2023, DOI: 10.18400/tjce.1239171. [CrossRef] [Google Scholar]
  30. A. S. Materials Group, “ZycoTherm Anti-Strip & Warm Mix Additive,” Mar. 23, 2023. [Online]. Available: www.asmg.com [Google Scholar]
  31. H. Ziari, P. Mirzababaei, and R. Babagoli, “Properties of bituminous mixtures modified with a nano-organosilane additive,” Petroleum Science and Technology, vol. 34, no. 4, pp. 386–393, Feb. 2016, DOI: 10.1080/10916466.2015.1136948. [CrossRef] [Google Scholar]
  32. P. Mirzababaei, “Effect of Zycotherm on moisture susceptibility of Warm Mix Asphalt mixtures prepared with different aggregate types and gradations,” Construction and Building Materials, vol. 116, pp. 403–412, Jul. 2016, DOI: 10.1016/j.conbuildmat.2016.04.143. [CrossRef] [Google Scholar]
  33. H. Raufi, A. Topal, B. Sengoz, and D. Kaya, “Assessment of Asphalt Binders and Hot Mix Asphalt Modified with Nanomaterials,” Period. Polytech. Civil Eng., Dec. 2019, DOI: 10.3311/PPci.14487. [Google Scholar]
  34. A. Ameli, A. F. Naeini, R. Babagoli, and A. Akbari, “Effects of anti-striping agents on performance of binder and stone matrix asphalt (SMA) mixtures containing polyphosphoric acid/styrene-butadiene rubber composite polymer blends and warm mixture additives,” Journal of Thermoplastic Composite Materials, vol. 36, no. 1, pp. 5–56, Jan. 2023, DOI: 10.1177/0892705720982342. [CrossRef] [Google Scholar]
  35. “EVOTHERM® M1 Warm mix asphalt additive.” MWV Specialty Chemicals, Nov. 28, 2012. [Online]. Available: www.mwv.com [Google Scholar]
  36. S. Materu, “Evaluation of Warm Mix Asphalt Technology for Urban Pavement Rehabilitation Projects,” University of Manitoba, Canada, 2019. [Google Scholar]
  37. X. Sanchez, S. Varamini, T. Somers, M. Sweezie, and S. L. Tighe, “Investigating the Effect Of Warm Mix Additive On The Performance Of Asphalt Mixtures,” Presented At The Testing And Modeling Of Road And Embankment Materials Sessio, Canada, 2017. [Google Scholar]
  38. A. Behnood, “A review of the warm mix asphalt (WMA) technologies: Effects on thermomechanical and rheological properties,” Journal of Cleaner Production, vol. 259, p. 120817, Jun. 2020, DOI: 10.1016/j.jclepro.2020.120817. [CrossRef] [Google Scholar]
  39. A. Behnood, M. M. Karimi, and G. Cheraghian, “Coupled effects of warm mix asphalt (WMA) additives and rheological modifiers on the properties of asphalt binders,” Cleaner Engineering and Technology, vol. 1, p. 100028, Dec. 2020, DOI: 10.1016/j.clet.2020.100028. [CrossRef] [Google Scholar]
  40. ASTM Standard D5/D5M - 20, “Standard Test Method for Penetration of Bituminous Materials.” ASTM International, West Conshohocken, PA, 2020. [Google Scholar]
  41. ASTM Standard D36, “Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus).” ASTM International, West Conshohocken, PA, 2020. DOI: 10.1520/MNL10830M. [Google Scholar]
  42. AASTHO T 315-12, “Standard method of test for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR).” AASHTO, Washington, D.C, 2012. [Google Scholar]
  43. X. Zhang, C. Han, J. Yang, X. Xu, and F. Zhang, “Evaluating the Rheological Properties of High-Modulus Asphalt Binders Modified with Rubber Polymer Composite Modifier,” Materials, vol. 14, no. 24, p. 7727, Dec. 2021, DOI: 10.3390/ma14247727. [CrossRef] [PubMed] [Google Scholar]
  44. M. Chen, B. Leng, S. Wu, and Y. Sang, “Physical, chemical and rheological properties of waste edible vegetable oil rejuvenated asphalt binders,” Construction and Building Materials, vol. 66, pp. 286–298, Sep. 2014, DOI: 10.1016/j.conbuildmat.2014.05.033. [CrossRef] [Google Scholar]
  45. S. Song et al., “Effects of Different Natural Factors on Rheological Properties of SBS Modified Asphalt,” Materials, vol. 15, no. 16, p. 5628, Aug. 2022, DOI: 10.3390/ma15165628. [CrossRef] [PubMed] [Google Scholar]
  46. M. Sabouri, D. Mirzaiyan, and A. Moniri, “Effectiveness of Linear Amplitude Sweep (LAS) asphalt binder test in predicting asphalt mixtures fatigue performance,” Construction and Building Materials, vol. 171, pp. 281–290, May 2018, DOI: 10.1016/j.conbuildmat.2018.03.146. [CrossRef] [Google Scholar]
  47. C. Hintz, R. Velasquez, C. Johnson, and H. Bahia, “Modification and Validation of Linear Amplitude Sweep Test for Binder Fatigue Specification,” Transportation Research Record, vol. 2207, no. 1, pp. 99–106, Jan. 2011, DOI: 10.3141/2207-13. [CrossRef] [Google Scholar]
  48. A. Kumar et al., “Fatigue characterisation of modified asphalt binders containing warm mix asphalt additives,” Road Materials and Pavement Design, vol. 21, no. 2, pp. 519–541, Feb. 2020, DOI: 10.1080/14680629.2018.1507921. [CrossRef] [Google Scholar]
  49. ASTM Standard D4124-09, “Standard Test Method for Separation of Asphalt into Four Fractions.” ASTM International, West Conshohocken, PA, 2018. [Google Scholar]
  50. R. Kleizienė, M. Panasenkienė, and A. Vaitkus, “Effect of Aging on Chemical Composition and Rheological Properties of Neat and Modified Bitumen,” Materials, vol. 12, no. 24, p. 4066, Dec. 2019, DOI: 10.3390/ma12244066. [CrossRef] [PubMed] [Google Scholar]
  51. R. Salehfard, H. Behbahani, D. Dalmazzo, and E. Santagata, “Effect of colloidal instability on the rheological and fatigue properties of asphalt binders,” Construction and Building Materials, vol. 281, p. 122563, Apr. 2021, DOI: 10.1016/j.conbuildmat.2021.122563. [CrossRef] [Google Scholar]
  52. S. Rudyk, “Relationships between SARA fractions of conventional oil, heavy oil, natural bitumen and residues,” Fuel, vol. 216, pp. 330–340, Mar. 2018, DOI: 10.1016/j.fuel.2017.12.001. [CrossRef] [Google Scholar]
  53. M. Paliukaitė, A. Vaitkus, and A. Zofka, “Evaluation of bitumen fractional composition depending on the crude oil type and production technology,” in The 9th International Conference “Environmental Engineering 2014,” Vilnius, Lithuania: Vilnius Gediminas Technical University Press “Technika” 2014, 2014. DOI: 10.3846/enviro.2014.162. [Google Scholar]
  54. J. W. H. Oliver, “Changes in the Chemical Composition of Australian Bitumens,” Road Materials and Pavement Design, vol. 10, no. 3, pp. 569–586, Jan. 2009, DOI: 10.1080/14680629.2009.9690214. [CrossRef] [Google Scholar]
  55. J. Miguel Martín-Martínez, “Rubber base adhesives,” in Adhesion Science and Engineering, Elsevier, 2002, pp. 573–675. DOI: 10.1016/B978-044451140-9/50013-5. [Google Scholar]
  56. M. R. M. Hasan, M. O. Hamzah, and T. S. Yee, “Performance characterizations of asphalt binders and mixtures incorporating silane additive ZycoTherm,” presented at the Proceedings Of The International Conference Of Global Network For Innovative Technology And Awam International Conference In Civil Engineering (IGNITE-AICCE’17): Sustainable Technology And Practice For Infrastructure and Community Resilience, Penang, Malaysia, 2017, p. 090001. DOI: 10.1063/1.5005731. [Google Scholar]
  57. D. Jones, H. Rizvi, Y. Liang, J. Buscheck, Z. Alavi, and B. Hofko, “Development of Performance-Based Specifications for Asphalt Rubber Binder: Interim Report on Phase 1 and Phase 2 Testing,” University of California Pavement Research Center, California, UCPRC-RR-2017-01, Sep. 2020. [Online]. Available: https://doi.org/10.7922/G2T72FQQ [Google Scholar]
  58. M. Ameri, S. Nowbakht, M. Molayem, and M. H. Mirabimoghaddam, “A study on fatigue modeling of hot mix asphalt mixtures based on the viscoelastic continuum damage properties of asphalt binder,” Construction and Building Materials, vol. 106, pp. 243–252, Mar. 2016, DOI: 10.1016/j.conbuildmat.2015.12.066. [CrossRef] [Google Scholar]
  59. M. A. Ishaq and F. Giustozzi, “Correlation between Rheological Fatigue Tests on Bitumen and Various Cracking Tests on Asphalt Mixtures,” Materials, vol. 14, no. 24, p. 7839, Dec. 2021, DOI: 10.3390/ma14247839. [CrossRef] [PubMed] [Google Scholar]
  60. M. Ameri, D. Mirzaiyan, and A. Amini, “Rutting Resistance and Fatigue Behavior of Gilsonite-Modified Asphalt Binders,” J. Mater. Civ. Eng., vol. 30, no. 11, p. 04018292, Nov. 2018, DOI: 10.1061/(ASCE)MT.1943-5533.0002468. [CrossRef] [Google Scholar]
  61. H. Ziari, A. Goli, and A. Amini, “Effect of Crumb Rubber Modifier on the Performance Properties of Rubberized Binders,” J. Mater. Civ. Eng., vol. 28, no. 12, p. 04016156, Dec. 2016, DOI: 10.1061/(ASCE)MT.1943-5533.0001661. [CrossRef] [Google Scholar]
  62. M. Tušar et al., “RILEM TC 279 WMR round robin study on waste polyethylene modified bituminous binders: advantages and challenges,” Road Materials and Pavement Design, vol. 24, no. 2, pp. 311–339, Feb. 2023, DOI: 10.1080/14680629.2021.2017330. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.