Open Access
Issue
E3S Web Conf.
Volume 477, 2024
International Conference on Smart Technologies and Applied Research (STAR'2023)
Article Number 00005
Number of page(s) 15
DOI https://doi.org/10.1051/e3sconf/202447700005
Published online 16 January 2024
  1. G. Eason, B. Noble, and I. N. Sneddon, “On certain integrals of Lipschitz-Hankel type involving products of Bessel functions,” Phil. Trans. Roy. Soc. London, vol. A247, pp. 529–551, April 1955. (references) [Google Scholar]
  2. P. Aleotti, and R. Chowdhury, “Landslide hazard assessment: summary review and new perspectives: Bull. Engg. Geol. Environ., vol. 58, pp. 21–44, 1999. [Google Scholar]
  3. R. Anbalagan, “Landslide hazard evaluation and zonation mapping in mountainous terrain”. Engg. Geol., vol. 32, pp. 269–277, 1992. [CrossRef] [Google Scholar]
  4. S. Anbazhagan, and E. Saranathan, “Structure and its impact on the drainage in part of Ponnaiyar river basin, Tamil Nadu using Remote Sensing Techniques”. Journal of Indian Society of Remote Sensing, vol. 29, no. 4, pp. 187–195, 2001. [CrossRef] [Google Scholar]
  5. Anon, Manual of National Land Use and Land Cover Mapping using Multi-temporal Satellite Data, National Remote Sensing Centre. Hyderabad, 2006. [Google Scholar]
  6. Anon, Manual of Groundwater Prospect Mapping using Remote sensing and Geographic Information System, Rajiv Gandhi National Drinking Water Mission Project, National Remote Sensing Centre, Hyderabad, 2008. [Google Scholar]
  7. C. Baeza, and J. Corominas, “Assessment of shallow landslide susceptibility using multivariate statistical techniques”. Earth. Surf. Proc. Land., vol. 26, pp. 251–263, (2001). [Google Scholar]
  8. E. E. Brabb, “Innovative approaches to landslide hazard and risk mapping”. In: Proceedings of 4th International Symposium on Landslides. Toronto. Canada. Vancouver. Canada: BiTech Publishers., vol. 1, pp. 307–324, 1984. [Google Scholar]
  9. Carrara, “Multivariate models for landslide hazard evaluation”. Mathematical Geology, vol. 15, no. 3, pp. 403–427, 1983. [CrossRef] [Google Scholar]
  10. P. K. Champatiray, D. Suvarna, R.C. Lakhera, and S. Sati, “Fuzzy based method for landslide hazard zonation in the active seismic zone of Himalaya”. Landslides, vol. 5, pp. 101–111, 2007. [CrossRef] [Google Scholar]
  11. C. J. Chung, A. Fabbri, and C. J. Van Westen, Multivariate regression analysis for landslide hazard zonation. In: Geographical information systems in assessing natural hazards. Kluwer Publications. Dordrecht, pp. 107–133, 1995. [Google Scholar]
  12. J. M. Crozier, Landslides: Causes, Consequences and Environment. Croom Helm Ltd. London. 1986. [Google Scholar]
  13. R. K. Dahal, S. Hasegawa, A. Nonomura, M. Yamanaka, S. Dhakal, and P. Paudyal, “Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of-evidence”. Geomorphology, vol. 102, pp. 496–510, 2008. [CrossRef] [Google Scholar]
  14. F. C. Dai, C. F. Lee, and Y. Y. Ngai, “Landslide risk assessment and management: an overview”. Engg. Geol., vol. 64, no. 1, pp. 65–87, 2002. [CrossRef] [Google Scholar]
  15. Das, S. Sahoo, C. J. Van Westen, A. Stein, and R. Hack, “Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India)”. Geomorphology, vol. 114, pp. 627–637, 2010. [CrossRef] [Google Scholar]
  16. Das, A. Stein, N. Kerle, and Dadhwal, “Landslide susceptibility mapping along road corridors in the Indian Himalayas using Bayesian logistic regression models”. Geomorphology, vol. 179, pp. 116–125, 2012. [CrossRef] [Google Scholar]
  17. M. Ercanoglu, and C. Gokceoglu, “Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey)”. Engg. Geol., vol. 75, no. 3–4, pp. 229–250, 2004. [CrossRef] [Google Scholar]
  18. S. Ghosh, E. J. M. Carranza, C. J. Van Westen, V. Jetten, and D. N. Bhattacharya, “Selecting and weighting spatial predictors for empirical modelling of landslide susceptibility in the Darjeeling Himalayas (India).Geomorphology, vol. 131, pp. 35–56, 2011. [CrossRef] [Google Scholar]
  19. R. P. Gupta, A. K. Saha, M. K. Arora, and A. Kumar, Landslide hazard zonation in a part of Bhagirathy Valley, Garhwal Himalayas. Using integrated Remote Sensing & GIS”. Jour. Him. Geol., vol. 20, pp. 71–85, 1999. [Google Scholar]
  20. F. Guzzetti, A. Carrara, M. Cardinalli, and P. Reichenbach, “Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study Central Italy”. Geomorphology, vol. 31, no. 1-4, pp. 181–216, 1999. [CrossRef] [Google Scholar]
  21. F. Guzzetti, P. Reichenbach, M. Cardinalli, M. Galli, and F. Ardizzone, “Probabilistic landslide hazard assessment at the basin scale”. Geomorphology, vol. 72, pp. 272–299, 2005. [CrossRef] [Google Scholar]
  22. C. H. Juang, D. H. Lee, and C. Sheu, “Mapping slope failure potential using fuzzy sets”. J Geotech Eng ASCE., vol. 118, no. 3, pp. 475–493, 1992. [CrossRef] [Google Scholar]
  23. M. Kannan, E. Saranathan, and R. Anbalagan, “Macro Landslide Hazard Zonation Mapping - Case Study from Bodi – Bodimettu Ghats Section, Theni District, Tamil Nadu – India”, Journal of Indian [Google Scholar]
  24. M. Kannan, E. Saranathan, and R. Anbalagan, “Landslide vulnerability mapping using frequency ratio model: a geospatial approach in Bodi-Bodimettu Ghat section, Theni district, Tamil Nadu. India”. Arabian Journal of Geosciences, vol. 6, no. 8, pp. 2901–2913, 2013. [CrossRef] [Google Scholar]
  25. M. Kannan, E. Saranathan, and R. Anbalagan, “Comparative analysis in GIS-based landslide hazard zonation-a case study in Bodi-Bodimettur Ghat Section, Theni District, Tamil Nadu, India”, Arabian Journal of Geosciences, (DOI 10.1007/s12517-013-1259-9), vol. 8, no. 2, pp. 691 - 699, 2015. [CrossRef] [Google Scholar]
  26. D. P. Kanungo, M. K. Arora, S. Sarkar, and R. P. Gupta, “A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility Zonation in Darjeeling Himalayas”. Engg. Geol., vol. 85, pp. 347–366, 2006. [CrossRef] [Google Scholar]
  27. D. P. Kanungo, M. K. Arora, S. Sarkar, and R. P. Gupta, “Landslide Susceptibility Zonation (LSZ) Mapping – A Review”. Jour. South Asia Disaster Studies., vol. 2, pp. 81–105, 2009. [Google Scholar]
  28. P. Kayastha, M. Dhital, and F. De Smedt, “Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: a case study from the Tinau watershed, West Nepal”. Comput. Geosci., vol. 52, 398–408, 2013. [CrossRef] [Google Scholar]
  29. Knapen, M. G. kitutu, J. Poesen, W. Breugelmans, J. Deckers, and A. Muwanga, “Landslides in a densely populated county at the foot slopes of Mount Elgon (Uganda): characteristics and causal factors”. Geomorphology, vol. 73, pp. 149–165, 2006. [CrossRef] [Google Scholar]
  30. R. Kumar, and R. Anbalagan, “Pixel-based terrain analysis for Landslide Hazard Zonation, a case study of Tehri reservoir region, Uttarakhand, India”, In Geos. Remote Sens. Sym. (IGARSS), IEEE, Int., pp. 2868–2871, 2013. [Google Scholar]
  31. S. Kundu, A. K. Saha, D. C. Sharma, and C. C. Pant, “Remote Sensing and GIS Based Landslide Susceptibility Assessment using Binary Logistic Regression Model: A Case Study in the Ganesh ganga Watershed, Himalayas”. Jour. Ind. Soc. Remote Sens., vol. 41, no. 3, pp. 697–709, 2013. [CrossRef] [Google Scholar]
  32. S. Lee, “Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data”. Int. Jour. Remote Sens., vol. 26, no. 7, pp. 1477–1491, 2005. [CrossRef] [Google Scholar]
  33. S. Lee, and B. Pradhan, “Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models”. Landslides, vol. 4, pp. 33–41, 2007. [CrossRef] [Google Scholar]
  34. S. Mani, and S. E. Saranaathan, “Hydrological parameters Controls Vulnerable Zones in Calicut – Nilambur – Gudalur Ghat section, Gudalur, The Nilgiris, Tamil Nadu”, International Journal of ChemTech Research, vol. 9, no. 3, pp. 248 - 253, 2016. [Google Scholar]
  35. J. Mathew, V. K. Jha, and G. S. Rawat, “Weights of evidence modelling for landslide hazard zonation mapping in part of Bhagirathi valley, Uttarakhand”. Curr. Sci., vol. 92, pp. 628–638, 2007. [Google Scholar]
  36. J. Mathew, V. K. Jha, and G. S. Rawat, “Landslide susceptibility zonation mapping and its validation in part of Garhwal Lesser Himalaya, India, using Binary Logistic Regression analysis and receiver operating characteristic curve method”. Landslides, vol. 6, pp. 17–26, 2009. [CrossRef] [Google Scholar]
  37. G. S. Mehrotra, S. Sarkar, D. P. Kanungo, and K. Mahadevaiah, Terrain Analysis and Spatial Assessment of Landslide Hazards in parts of Sikkim Himalaya, Geological Society of India, vol. 47, pp. 491–498, 1996. [Google Scholar]
  38. S. Mondal, and R. Maiti, “Landslide susceptibility analysis of Shiv-Khola watershed, Darjeeling: a remote sensing & GIS based Analytical Hierarchy Process (AHP)”. Jour. Indian Soc. Remote Sens., vol. 40, no. 3, pp. 483–496, 2012. [CrossRef] [Google Scholar]
  39. M. Muthukumar, S. M. Ramasamy, M. D. S. K. Sartaj Basha, and C. J. Kumanan, “Geomorphic Controls of Landslides, The Nilgiris Mountains, South India”, Journal of Indian Landslides, vol. 2, no. 2, pp. 35–40, 2009. [Google Scholar]
  40. R. Nagarajan, A. Mukherjee, A. Roy, and M. V. Khire, “Temporal remote sensing data and GIS application in landslide hazard zonation of part of Western Ghat, India”. Int. Jour. Remote Sens., vol. 19, no. 4, pp. 573–585, 1998. [CrossRef] [Google Scholar]
  41. R. Nagarajan, A. Roy, R. Vinod Kumar, A. Mukherjee, and M. V. Khire, “Landslide hazard susceptibility mapping based on terrain and climatic factors for tropical monsoon regions”. Bull Eng. Geol. Env., vol. 58, 2000. [Google Scholar]
  42. T. H. Nilsen, R. H. Wright, T. C. Vlasic, and W. Spangle, “Relative Slope Stability and Land use Planning in the San Francisco Bay Region, California”, U.S. Geological Survey Professional Paper 944, U.S. Government Printing Office, Washington, D.C., 1979. [Google Scholar]
  43. K. Pachauri, and M. Pant, “Landslide hazard mapping based on geological attributes”, Engineering Geology, vol. 32, pp. 81-100, 1992. [CrossRef] [Google Scholar]
  44. Pradhan, and S. Lee, “Delineation of landslide hazard areas using frequency ratio, logistic regression and artificial neural network model at Penang Island, Malaysia”. Environ. Earth Sc., vol. 60, pp. 1037–1054, 2010. [CrossRef] [Google Scholar]
  45. M. Pandey, P. P. Dabral, V. M. Chowdhary, and N. K. Yadav, “Landslide hazard zonation using remote sensing and GIS: a case study of Dikrong river basin, Arunachal Pradesh, India”. Environmental Geology, vol. 54, pp. 1517 – 1529, 2008. [CrossRef] [Google Scholar]
  46. S. M. Ramasamy, C. J. Kumanan, M. Muthukumar, and R. Nelakanntan, “GIS-Based Slope Analysis for Landslide Hazard Zonation Mapping, Nilgiris mountains, South India”. International Journal of Geoinformatics, vol. 4, no. 3, pp. 47–57, 2008. [Google Scholar]
  47. Reza Talaei, “Landslide susceptibility Zonation mapping using Logistic Regression and its validation in Hashtchin Region, Northwest of IRAN”, Journal Geological Society of India, vol. 84, no. 1, pp. 68-86, 2014. [CrossRef] [Google Scholar]
  48. T. L. Saaty, The analytical hierarchy process: Planning, priority setting, resource allocation (1sted.). Pittsburgh: RWS, 1990. [Google Scholar]
  49. T. L. Saaty. Fundamentals of decision-making and priority theory with analytic hierarchy process (1sted.). Pittsburgh: RWS, 1994. [Google Scholar]
  50. T. L. Saaty. and L.G. Vargas, Models, methods, concepts and applications of the analytic hierarchy process (1sted.). Boston: Kluwer, 2001. [CrossRef] [Google Scholar]
  51. Slimani, K., Ruichek, Y., & Messoussi, R. (2022). Compound facial emotional expression recognition using cnn deep features. Engineering Letters, 30(4). [Google Scholar]
  52. S. E. Saranaathan “Review of different research Techniques and Models in Rock Mass Rating and Slope Stability Analysis”, Journal of Chemical and Pharmaceutical Research, vol. 7, no. 7, pp. 160–168, 2015. [Google Scholar]
  53. E. Saranathan, M. Kannan, and G. Victor Rajamanickam, “Assessment of Landslide Hazard Zonation mapping in Kodaikanal, Tamil Nadu, India”, International Journal of Disaster Advances, vol. 5, no. 4, pp. 42 – 50, 2012. [Google Scholar]
  54. S. E. Saranaathan, and S. Mani “Landslide Susceptibility Zonation mapping using Multi-criterion Analysis - CNG 37 ghat section, Nadugani, Gudalur Taluk, The Nilgiris - Using Geological Factors”, International Journal of Earth Science and Engineering, vol. 9, no. 4, pp. 885 - 887, 2016. [Google Scholar]
  55. S. Sarkar, D. P. Kanungo, and G. S. Mehrotra, “Landslide hazard zonation: A case study in Garhwal Himalaya, India”. Mountain Research and Development, vol. 15, no. 4, pp. 301–309, 1995. [CrossRef] [Google Scholar]
  56. S. Sarkar, and D. P. Kanungo, “An integrated approach for landslide susceptibility mapping using remote sensing and GIS”. Photogram. Eng. Remote. Sens., vol. 70, no. 5, pp. 617–625, 2004. [CrossRef] [Google Scholar]
  57. D. N. Seshagiri, S. Badrinarayanan, R. Upendran, C. B. Lakshmikantham, and V. Srinivasan, The Nilgiris landslide Miscellaneous publication. Geological Survey of India, vol. 57, 1982. [Google Scholar]
  58. C. Sriramkumar, E. Saranathan, G. Victor Rajamanickam B.S. Nadage, “Landslide zonation mapping – Konkan Railway, Ratnagiri Region, Maharastra”, International Symposium On “Geospatial Databases for Sustainable Development”, Goa, India, September 27-30, IAPRS – SIS, vol. 36, no. 4, pp. 582 – 586, 2006. [Google Scholar]
  59. D.J. Varnes, Landslide hazard zonation: A review of principles and practice. International Association of Engineering Geology. UNESCO. Paris, 1984. [Google Scholar]
  60. Wagner, E. Leite, and R. Olivier, “Rock and debris slide risk mapping in Nepal–A user-friendly PC system for risk mapping”, Proceedings of the 5th International Symposium on Landslides,10–15 July, Lausanne, Switzerland (A.A. Balkema, Rotterdam, The Netherlands), vol. 2, pp. 1251–1258, 1988. [Google Scholar]
  61. Yalcin, “GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations”. Catena, vol. 72, pp. 1–12, 2008. [CrossRef] [Google Scholar]
  62. E. Yesilnacar, and T. Topal, “Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey)”. Engg. Geol., vol. 79, no. 3–4, pp. 251–266, 2005. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.