Open Access
Issue
E3S Web Conf.
Volume 477, 2024
International Conference on Smart Technologies and Applied Research (STAR'2023)
Article Number 00018
Number of page(s) 9
DOI https://doi.org/10.1051/e3sconf/202447700018
Published online 16 January 2024
  1. Lee, Z. H., Sethupathi, S., Lee, K. T., Bhatia, S., & Mohamed, A. R. (2013). An overview on global warming in Southeast Asia: CO2 emission status, efforts done, and barriers. Renewable and Sustainable Energy Reviews, 28, 71-81. [CrossRef] [Google Scholar]
  2. Evans, S. G., Guthrie, R. H., Roberts, N. J., & Bishop, N. F. (2007). The disastrous 17 February 2006 rockslide-debris avalanche on Leyte Island, Philippines: a catastrophic landslide in tropical mountain terrain. Natural Hazards and Earth System Sciences, 7(1), 89-101. [CrossRef] [Google Scholar]
  3. D. A. Vallero, “Engineering Control Concepts,” in Fundamentals of Air Pollution, Elsevier, 2008, pp. 774–785. [Google Scholar]
  4. Sha, G. Y., Liu, Y. H., Yin, R. Y., & Zhang, C. X. (2008). The current status and the countemeasures of energy saving and CO2 reduction in steel industry. Energy for Metallurgical Industry, 27(1), 3-6. [Google Scholar]
  5. Jouhara, H., Khordehgah, N., Almahmoud, S., Delpech, B., Chauhan, A., & Tassou, S. A. (2018). Waste heat recovery technologies and applications. Thermal Science and Engineering Progress, 6, 268-289. [CrossRef] [Google Scholar]
  6. Liboff, R. L. (1997). Maxwell’s demon and the second law of thermodynamics. Foundations of Physics Letters, 10(1), 89-92. [CrossRef] [Google Scholar]
  7. Manowska, A., & Nowrot, A. (2019). The importance of heat emission caused by global energy production in terms of climate impact. Energies, 12(16), 3069. [CrossRef] [Google Scholar]
  8. Brückner, S., Liu, S., Miró, L., Radspieler, M., Cabeza, L. F., & Lävemann, E. (2015). Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies. Applied Energy, 151, 157-167. [CrossRef] [Google Scholar]
  9. Woolley, E., Luo, Y., & Simeone, A. (2018). Industrial waste heat recovery: A systematic approach. Sustainable Energy Technologies and Assessments, 29, 50-59. [CrossRef] [Google Scholar]
  10. Saadon, S., Talib, A.R.A. (2016). An analytical study on the performance of the organic Rankine cycle for turbofan engine exhaust heat recovery. IOP Conference Series: Materials Science and Engineering, 152(1) 012011. [CrossRef] [Google Scholar]
  11. Hossain, M.J., Chowdhury, J.I., Balta-Ozkan, N., Asfand, F., Saadon, S., Imran, M. (2021). Design optimization of supercritical carbon dioxide (s-CO2) cycles for waste heat recovery from marine engines. Journal of Energy Resources Technology, Transactions of the ASME, 143(12), 120901. [CrossRef] [Google Scholar]
  12. Ken, C.Z., Saadon, S. (2022). Parametric Study of Supercritical Carbon Dioxide (sCO2) Cycles for Waste Heat Recovery from Jet Engines. Journal of Aeronautics, Astronautics and Aviation, 54(3), p. 287-296. [Google Scholar]
  13. Alsayegh, A., & Ali, N. (2020). Gas Turbine Intercoolers: Introducing Nanofluids—A Mini- Review. Processes, 8(12), 1572. [CrossRef] [Google Scholar]
  14. Xu, Y., Tang, H., Chen, M., & Duan, F. (2020). Optimization and design of heat recovery system for aviation. Applied Thermal Engineering, 165, 114581. [CrossRef] [Google Scholar]
  15. Omar, H. H., Kuz’michev, V. S., & Tkachenko, A. Y. (2021). Optimization the main thermodynamics parameters of the aviation turbofan engines with heat recovery in the aircraft system. Journal of Physics: Conference Series (Vol. 1745, No. 1, p. 012105. [CrossRef] [Google Scholar]
  16. Salpingidou, C., Vlahostergios, Z., Misirlis, D., Donnerhack, S., Flouros, M., Goulas, A., & Yakinthos, K. (2017). Thermodynamic analysis of recuperative gas turbines and aero engines. Applied Thermal Engineering, 124, 250-260. [CrossRef] [Google Scholar]
  17. Aydin, H., Turan, O., Karakoc, T. H., & Midilli, A. (2015). Exergetic sustainability indicators as a tool in commercial aircraft: a case study for a turbofan engine. International journal of green energy, 12(1), 28-40. [CrossRef] [Google Scholar]
  18. Chen, T., Zhang, X. P., Wang, J., Li, J., Wu, C., Hu, M., & Bian, H. (2020). A review on electric vehicle charging infrastructure development in the UK. Journal of Modern Power Systems and Clean Energy, 8(2), 193-205. [CrossRef] [Google Scholar]
  19. Shibl, M., Ismail, L., & Massoud, A. (2021). Electric vehicles charging management using machine learning considering fast charging and vehicle-to-grid operation. Energies, 14(19), 6199. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.