Open Access
Issue
E3S Web Conf.
Volume 477, 2024
International Conference on Smart Technologies and Applied Research (STAR'2023)
Article Number 00022
Number of page(s) 10
DOI https://doi.org/10.1051/e3sconf/202447700022
Published online 16 January 2024
  1. S.Karumanchi et al., ‘Payload-centric autonomy for in-spacer obotic assembly of modular space structures’, J. Field Robot., vol.35,no. 6, pp. 1005–1021,2018. [CrossRef] [Google Scholar]
  2. N. N. Lee et al., ‘Architecture for in-space robotic assembly of a modular space telescope’, J.Astron. Telesc. Instrum. Syst., vol. 2,no.4, p. 041207,2016. [CrossRef] [Google Scholar]
  3. M. Okasha, C. Park, and S.-Y. Park, ‘Guidance and control for satellite in-orbit-self-assembly proximity operations’,Aerosp. Sci.Technol., vol. 41,pp. 289–302, 2015. [CrossRef] [Google Scholar]
  4. T. Chen,H. Wen,H. Hu,andD. Jin,‘On -orbit assembly of a team of flexible spacecraft using potential field based method’, Acta Astronaut., vol.133,pp.221–232,2017. [CrossRef] [Google Scholar]
  5. T.Chenand H. Wen, ‘Autonomous assembly with collision avoidance of a fleet of flexible Space craft based on disturbance observer’, ActaAstronaut.,vol.147,pp.86–96,2018. [CrossRef] [Google Scholar]
  6. M. Okasha,C. Park,andS.Y. Park,‘ Autonomous multi satellites assembly in keplerian orbits’,In AIAA Guidance, Navigation ,and Control (GNC) Conference,2013,p.5195. [Google Scholar]
  7. R. C. Foust, E. S. Lupu, Y. K. Nakka, S.-J. Chung, and F. Y. Hadaegh, ‘Autonomous in-orbitsatellite assembly from a modular heterogeneous swarm’, Acta Astronaut., vol. 169, pp. 191–205, 2020. [CrossRef] [Google Scholar]
  8. R. Bevilacqua, T. Lehmann, and M. Romano, ‘Development and experimentation of LQR/APFguidance and control for autonomous proximity maneuvers of multiple spacecraft’, ActaAstronaut.,vol. 68, no. 7–8, pp. 1260–1275, 2011. [CrossRef] [Google Scholar]
  9. Z. Cheng,X. Hou,X. Zhang,L. Zhou,J. Guo,andC. Song,‘In-orbit assembly mission for the Space solar powerstation’,ActaAstronaut.,vol.129,pp. 299–308,2016. [CrossRef] [Google Scholar]
  10. Y. Lu, Z. Huang, W. Zhang, H. Wen, and D. Jin, ‘Experimental investigation on automated assembly of space structure from cooperative modular components’, Acta Astronaut., vol. 171,pp. 378–387,2020. [CrossRef] [Google Scholar]
  11. F. L. Lewis, H. Zhang, K. Hengster-Movric, and A. Das, Cooperative Control of Multi-AgentSystems: Optimal and Adaptive Design Approaches. London: Springer London, 2014. doi: 10.1007/978-1-4471-5574-4. [CrossRef] [Google Scholar]
  12. B. Wu and X. Cao, ‘Decentralized control for spacecraft formation in elliptic orbits’, Aircr. Eng.Aerosp.Technol.,vol.90, no. 1, pp. 166–174,Jan.2018, doi: 10.1108/AEAT-12-2015-0250. [CrossRef] [Google Scholar]
  13. S.-J. Chung, U. Ahsun, and J.-J. E. Slotine, ‘Application of synchronization to formation flying spacecraft: Lagrangian approach’,J.Guid. Control Dyn.,vol.32,no.2,pp.512–526,2009. [CrossRef] [Google Scholar]
  14. A. Nikou and D. V. Dimarogonas, ‘Decentralized tube-based model predictive control of uncertain nonlinear multiagent systems’, Int. J. Robust Nonlinear Control, vol. 29, no. 10, pp.2799–2818, 2019. [CrossRef] [Google Scholar]
  15. W. Clohessy and R. Wiltshire, ‘Terminal guidance system for satellite rendezvous’, J. Aerosp. Sci.,vol. 27, no. 9,pp. 653–658, 1960. [CrossRef] [Google Scholar]
  16. J. Tschauner and P. Hempel, ‘Rendezvous with a target in an elliptical orbit’, Astronaut. Acta,vol. 11,no. 2, pp. 104–109,1965. [Google Scholar]
  17. J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, ‘CasADi – A software framework for nonlinear optimization and optimal control’, Math. Program. Comput., vol. 11,no.1, pp. 1–36, 2019, doi: 10.1007/s12532-018-0139-4. [CrossRef] [Google Scholar]
  18. Astudillo, J. Carpentier, J. Gillis, G. Pipeleers, and J. Swevers, ‘Mixed use of analytical derivatives and algorithmic differentiation for NMPC of robot manipulators’, IFAC-Pap., vol.54,no. 20,pp. 78–83, 2021. [Google Scholar]
  19. M. M. Morato, J. E. Normey-Rico, and O. Sename, ‘Model predictive control design for linear parametervarying systems:Asurvey’,Annu.Rev.Control,vol.49, pp.64–80,2020. [CrossRef] [Google Scholar]
  20. N. Lanzetti, Y. Z. Lian, A. Cortinovis, L. Dominguez, M. Mercangöz, and C. Jones, ‘Recurrentneural network based MPC for process industries’, in 2019 18th European Control Conference(ECC),2019, pp. 1005–1010. [Google Scholar]
  21. Chen, T., Zhang, X. P., Wang, J., Li, J., Wu, C., Hu, M., & Bian, H. (2020). A review on electric vehicle charging infrastructure development in the UK. Journal of Modern Power Systems and Clean Energy, 8(2), 193-205. [CrossRef] [Google Scholar]
  22. Shibl, M., Ismail, L., & Massoud, A. (2021). Electric vehicles charging management using machine learning considering fast charging and vehicle-to-grid operation. Energies, 14(19), 6199. [CrossRef] [Google Scholar]
  23. Apata, O., Bokoro, P. N., & Sharma, G. (2023). The Risks and Challenges of Electric Vehicle Integration into Smart Cities. Energies, 16(14), 5274. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.