Open Access
Issue
E3S Web Conf.
Volume 477, 2024
International Conference on Smart Technologies and Applied Research (STAR'2023)
Article Number 00035
Number of page(s) 12
DOI https://doi.org/10.1051/e3sconf/202447700035
Published online 16 January 2024
  1. Gargano, A., Das, R., Mouritz, A.P., 2019. Finite element modelling of the explosive blast response of carbon fibre-polymer laminates. Composites Part B: Engineering 177, 107412. https://doi.org/10.1016/j.compositesb.2019.107412 [CrossRef] [Google Scholar]
  2. Chocron, S., Carpenter, A.J., Scott, N.L., Bigger, R.P., Warren, K., 2019. Impact on carbon fiber composite: Ballistic tests, material tests, and computer simulations. International Journal of Impact Engineering 131, 39–56. https://doi.org/10.1016/j.ijimpeng.2019.05.002 [CrossRef] [Google Scholar]
  3. Sun, X.C., Hallett, S.R., 2018. Failure mechanisms and damage evolution of laminated composites under compression after impact (CAI): Experimental and numerical study. Composites Part A: Applied Science and Manufacturing 104, 41–59. https://doi.org/10.1016/j.compositesa.2017.10.026 [CrossRef] [Google Scholar]
  4. Strait, L.H., Karasek, M.L., Amateau, M.F., 1992. Effects of Stacking Sequence on the Impact Resistance of Carbon Fiber Reinforced Thermoplastic Toughened Epoxy Laminates. Journal of Composite Materials 26, 1725–1740. https://doi.org/10.1177/002199839202601202 [CrossRef] [Google Scholar]
  5. Yashiro, S., Ogi, K., Nakamura, T., Yoshimura, A., 2013. Characterisation of high-velocity impact damage in CFRP laminates: Part I – Experiment. Composites Part A: Applied Science and Manufacturing 48, 93–100. https://doi.org/10.1016/j.compositesa.2012.12.015 [CrossRef] [Google Scholar]
  6. Artero-Guerrero, J.A., Pernas-Sánchez, J., Martín-Montal, J., Varas, D., López-Puente, J., 2018. The influence of laminate stacking sequence on ballistic limit using a combined Experimental/FEM/Artificial Neural Networks (ANN) methodology. Composite Structures, In honor of Prof. Y. Narita 183, 299–308. https://doi.org/10.1016/j.compstruct.2017.03.068 [CrossRef] [Google Scholar]
  7. Saito, H., Morita, M., Kawabe, K., Kanesaki, M., Takeuchi, H., Tanaka, M., Kimpara, I., 2011. Effect of ply-thickness on impact damage morphology in CFRP laminates. Journal of Reinforced Plastics and Composites 30, 1097–1106. https://doi.org/10.1177/0731684411416532 [CrossRef] [Google Scholar]
  8. López-Puente, J., Zaera, R., Navarro, C., 2002. The effect of low temperatures on the intermediate and high velocity impact response of CFRPs. Composites Part B: Engineering 33, 559–566. https://doi.org/10.1016/S1359-8368(02)00065-3 [CrossRef] [Google Scholar]
  9. Mitrevski, T., Marshall, I.H., Thomson, R., 2006. The influence of impactor shape on the damage to composite laminates. Composite Structures, Fifteenth International Conference on Composite Materials 76, 116–122. https://doi.org/10.1016/j.compstruct.2006.06.017 [Google Scholar]
  10. Mitrevski, T., Marshall, I.H., Thomson, R., 2006. The influence of impactor shape on the damage to composite laminates. Composite Structures, Fifteenth International Conference on Composite Materials 76, 116–122. https://doi.org/10.1016/j.compstruct.2006.06.017 [Google Scholar]
  11. P.J. Hazell, G. Kister, C. Stennett, P. Bourque, G. Cooper, Normal and oblique penetration of woven CFRP laminates by a high velocity steel sphere, Composites Part A: Applied Science and Manufacturing 39(5) (2008) 866-874. [CrossRef] [Google Scholar]
  12. Y.B. Sudhir Sastry, P.R. Budarapu, Y. Krishna, S. Devaraj, Studies on ballistic impact of the composite panels, Theoretical and Applied Fracture Mechanics 72 (2014) 2-12. [CrossRef] [Google Scholar]
  13. A. Shimamoto, R. Kubota, K. Takayama, High-velocity impact characteristic of carbon fiber reinforced plastic composite at low temperature, The Journal of Strain Analysis for Engineering Design 47(7) (2012) 471-479. [CrossRef] [Google Scholar]
  14. K. Yuan, K. Liu, Z. Wang, M. Yang, An investigation on the perforation resistance of laminated CFRP beam and square plate, International Journal of Impact Engineering 157 (2021) 103967. [CrossRef] [Google Scholar]
  15. M. Yamada, Y. Tanabe, A. Yoshimura, T. Ogasawara, Three-dimensional measurement of CFRP deformation during high-speed impact loading, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 646(1) (2011) 219-226. [CrossRef] [Google Scholar]
  16. K.R. Jagtap, S.Y. Ghorpade, A. Lal, B.N. Singh, Finite Element Simulation of Low Velocity Impact Damage in Composite Laminates, Materials Today: Proceedings 4(2, Part A) (2017) 2464-2469. [CrossRef] [Google Scholar]
  17. S. Yashiro, K. Ogi, A. Yoshimura, Y. Sakaida, Characterization of high-velocity impact damage in CFRP laminates: Part II – prediction by smoothed particle hydrodynamics, Composites Part A: Applied Science and Manufacturing 56 (2014) 308-318. [CrossRef] [Google Scholar]
  18. M. Grujicic, T. He, H. Marvi, B.A. Cheeseman, C.F. Yen, A comparative investigation of the use of laminate-level meso-scale and fracture-mechanics-enriched meso-scale composite-material models in ballistic-resistance analyses, Journal of Materials Science 45(12) (2010) 3136-3150. [CrossRef] [Google Scholar]
  19. B. Wang, J. Xiong, X. Wang, L. Ma, G.-Q. Zhang, L.-Z. Wu, J.-C. Feng, Energy absorption efficiency of carbon fiber reinforced polymer laminates under high velocity impact, Materials & Design 50 (2013) 140-148. [CrossRef] [Google Scholar]
  20. M.R. Abir, T.E. Tay, H.P. Lee, On the improved ballistic performance of bio-inspired composites, Composites Part A: Applied Science and Manufacturing 123 (2019) 59-70. [CrossRef] [Google Scholar]
  21. J. Zhi, B.-Y. Chen, T.-E. Tay, Geometrically nonlinear analysis of matrix cracking and delamination in composites with floating node method, Computational Mechanics 63(2) (2019) 201-217. [CrossRef] [Google Scholar]
  22. R. Higuchi, T. Okabe, A. Yoshimura, T.E. Tay, Progressive failure under high-velocity impact on composite laminates: Experiment and phenomenological mesomodeling, Engineering Fracture Mechanics 178 (2017) 346-361. [CrossRef] [Google Scholar]
  23. Bandaru, Aswani Kumar, et al. “Ballistic impact response of Kevlar® reinforced thermoplastic composite armors.” International Journal of Impact Engineering 89 (2016): 1-13. [CrossRef] [Google Scholar]
  24. Liu H, Liu J, Ding Y, Zheng J, Luo L, Kong X, et al. Modelling the effect of projectile hardness on the impact response of a woven carbon-fibre reinforcedthermoplastic-matrix composite. Int J Lightweight Mater Manuf 2020;3:403–15. [Google Scholar]
  25. Zhang, J., Zhang, X., 2015. Simulating low-velocity impact induced delamination in composites by a quasi-static load model with surface-based cohesive contact. Composite Structures 125, 51–57. https://doi.org/10.1016/j.compstruct.2015.01.050 [CrossRef] [Google Scholar]
  26. Hou, N., Zhao, R., Wang, X., Tang, Z., Cui, H., Li, Y., 2023. Effects of surface topography and specimen thickness on high-speed raindrop impact damage of CFRP laminates. Chinese Journal of Aeronautics 36, 186–200. https://doi.org/10.1016/j.cja.2023.03.032 [CrossRef] [Google Scholar]
  27. Zou, X., Gao, W., Xi, W., Influence of various damage mechanisms on the low-velocity impact response of composite laminates. Polymer Composites. https://doi.org/10.1002/pc.27810 [Google Scholar]
  28. Yuan, K., Liu, K., Wang, Z., Wei, K., Yang, M., 2021. Dynamic fracture in CFRP laminates: Effect of projectile mass and dimension. Engineering Fracture Mechanics 251, 107764. https://doi.org/10.1016/j.engfracmech.2021.107764 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.