Open Access
Issue
E3S Web Conf.
Volume 477, 2024
International Conference on Smart Technologies and Applied Research (STAR'2023)
Article Number 00046
Number of page(s) 9
DOI https://doi.org/10.1051/e3sconf/202447700046
Published online 16 January 2024
  1. Asadollah, S.B.H.S., Sharafati, A., Motta, D. and Yaseen, Z.M., 2021. River water quality index prediction and uncertainty analysis: A comparative study of machine learning models. Journal of Environmental Chemical Engineering, 9(1), p.104599. [CrossRef] [Google Scholar]
  2. Pandhiani, S.M., Sihag, P., Shabri, A. Bin, Singh, B., Pham, Q.B., 2020. Time-Series Prediction of Streamflows of Malaysian Rivers Using Data-Driven Techniques. J. Irrig. Drain. Eng. 146, 4020013. [CrossRef] [Google Scholar]
  3. Shahzad, G., Rehan, R., Fahim, M., 2019. Rapid Performance Evaluation of Water Supply Services for Strategic Planning. Civ. Eng. J. 5, 1197–1204. [CrossRef] [Google Scholar]
  4. Aldhyani, T.H., Al-Yaari, M., Alkahtani, H. and Maashi, M., 2020. Water quality prediction using artificial intelligence algorithms. Applied Bionics and Biomechanics, 2020. [Google Scholar]
  5. K. Farrell-Poe, W. Payne, and R. Emanuel, Water Quality & Monitoring, University of Arizona Repository, 2000 [Google Scholar]
  6. Gomolka, Z.; Twarog, B.; Zeslawska, E.; Lewicki, A.; Kwater, T. Using Artificial Neural Networks to Solve the Problem Represented by BOD and DO Indicators. Water 2017, 10, 4. [CrossRef] [Google Scholar]
  7. Slimani, K., Ruichek, Y., & Messoussi, R. (2022). Compound facial emotional expression recognition using cnn deep features. Engineering Letters, 30(4). [Google Scholar]
  8. Melesse, A.M.; Khosravi, K.; Tiefenbacher, J.P.; Heddam, S.; Kim, S.; Mosavi, A.; Pham, B.T. River Water Salinity Prediction Using Hybrid Machine Learning Models. Water 2020, 12, 2951. [CrossRef] [Google Scholar]
  9. Shafi, U.; Mumtaz, R.; Anwar, H.; Qamar, A.M.; Khurshid, H. Surface Water Pollution Detection using Internet of Things. In Proceedings of the 2018 15th International Conference on Smart Cities: Improving Quality of Life Using ICT & IoT (HONET-ICT), Islamabad, Pakistan, 8–10 October 2018; pp. 92–96. [Google Scholar]
  10. Hu, Y., Wang, N., Liu, S., Jiang, Q., Zhang, N. and Liang, C., 2020, December. Prediction of River Water Quality Based on Neural Network Model. In 2020 IEEE 6th International Conference on Computer and Communications (ICCC) (pp. 2075-2079). IEEE. [Google Scholar]
  11. Othman, F., Alaaeldin, M.E., Seyam, M., Ahmed, A.N., Teo, F.Y., Ming Fai, C., Afan, H.A., Sherif, M., Sefelnasr, A. and El-Shafie, A., 2020. Efficient river water quality index prediction considering minimal number of inputs variables. Engineering Applications of Computational Fluid Mechanics, 14(1), pp.751-763. [CrossRef] [Google Scholar]
  12. Haghiabi, A.H., Nasrolahi, A.H. and Parsaie, A., 2018. Water quality prediction using machine learning methods. Water Quality Research Journal, 53(1), pp.3-13. [CrossRef] [Google Scholar]
  13. Hmoud Al-Adhaileh, M. and WaselallahAlsaade, F., 2021. Modelling and Prediction of Water Quality by Using Artificial Intelligence. Sustainability, 13(8), p.4259. [CrossRef] [Google Scholar]
  14. Abobakr Yahya, A.S., Ahmed, A.N., Binti Othman, F., Ibrahim, R.K., Afan, H.A., El-Shafie, A., Fai, C.M., Hossain, M.S., Ehteram, M. and Elshafie, A., 2019. Water quality prediction model based support vector machine model for ungauged river catchment under dual scenarios. Water, 11(6), p.1231. [CrossRef] [Google Scholar]
  15. Noori, N., Kalin, L. and Isik, S., 2020. Water quality prediction using SWAT-ANN coupled approach. Journal of Hydrology, 590, p.125220. [CrossRef] [Google Scholar]
  16. Lu, H. and Ma, X., 2020. Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere, 249, p.126169. [CrossRef] [PubMed] [Google Scholar]
  17. Anyanwu, E. D., Jonah, U. E., Adetunji, O. G., & Nwoke, O. B. (2022). An appraisal of the physicochemical parameters of Ikwu River, Umuahia, Abia State in South-eastern, Nigeria for multiple uses. International Journal of Energy and Water Resources, 1-8. [Google Scholar]
  18. Mazhar, S., Sun, G., Bilal, A., Hassan, B., Li, Y., Zhang, J., ... & Hassan, T. (2022). AUnet: A deep learning framework for surface water channel mapping using large-coverage remote sensing images and sparse scribble annotations from OSM data. Remote Sensing, 14(14), 3283. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.