Open Access
Issue
E3S Web Conf.
Volume 477, 2024
International Conference on Smart Technologies and Applied Research (STAR'2023)
Article Number 00055
Number of page(s) 12
DOI https://doi.org/10.1051/e3sconf/202447700055
Published online 16 January 2024
  1. A. Walosik, W. Skrzypek, Environmental awareness of students and the media in education for sustainable development. In Environmental Education in a Knowledge Society; Tuszynska, L., Ed.; Publishing House of the University of Warsaw: Warsaw, Poland, (2010). [Google Scholar]
  2. M. Schulz, E-Learning as a Development Tool. Sustainability, 15, 15012. (2023). [CrossRef] [Google Scholar]
  3. SM. Ali et al. Development Goals towards Sustainability. Sustainability, 15, 9443. (2023) [CrossRef] [Google Scholar]
  4. I.E. Karim, Electronic Learning and its Benefits in Education, EURASIA Journal of Mathematics, Science and Technology Education, 15(3), (2019) [Google Scholar]
  5. G. Basilaia, D. Kvavadze. Transition to Online Education in Schools during a SARS-CoV-2 Coronavirus (COVID-19) Pandemic in Georgia. Pedagog. Res. 5, 5. 1-9. 10.29333/pr/7937 (2020) [CrossRef] [Google Scholar]
  6. R.F.Kizilcec et al. Scaling up behavioral science interventions in online education. Proceedings of the National Academy of Sciences of the United States of America 117: 14900 – 14905. (2020) [CrossRef] [PubMed] [Google Scholar]
  7. V. Arghode, E. Brieger, J.Wang. Engaging instructional design and instructor role in online learning environment. European Journal of Training and Development, Vol. 42 No. 7/8, pp. 366-380. [Google Scholar]
  8. I.Tuomi et al. The impact of Artificial Intelligence on learning, teaching, and education. European Commission, Joint Research Centre. (2018) [Google Scholar]
  9. K. M. J. Rahman et al., Challenges, Applications and Design Aspects of Federated Learning: A Survey, in IEEE Access, vol. 9, pp. 124682-124700, (2021) [CrossRef] [Google Scholar]
  10. S. Lawn, X. Zhi, A.Morello. An integrative review of e-learning in the delivery of self-management support training for health professionals. BMC Med Educ. 17(1),(2017) [CrossRef] [Google Scholar]
  11. R. Roy, S. Potter, et K. Yarrow, Designing low carbon higher education systems: Environmental impacts of campus and distance learning systems, Int. J. Sustain. High. Educ., vol. 9, no 2, p. 116-130, avr. (2008), [CrossRef] [Google Scholar]
  12. C.J. Hoofnagle, B.v.Sloot, F.Z. Borgesius. The European Union general data protection regulation: what it is and what it means, Information & Communications Technology Law, 28:1, 65-98, (2019) [CrossRef] [Google Scholar]
  13. D. Jatain, V. Singh, et N. Dahiya, A contemplative perspective on federated machine learning: Taxonomy, threats & vulnerability assessment and challenges, J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no 9, p. 6681-6698, (2022) [Google Scholar]
  14. J. Konecný et al. Federated Optimization: Distributed Machine Learning for On-Device Intelligence. ArXiv abs/1610.02527 (2016) [Google Scholar]
  15. S. Banabilah, M. Aloqaily, E. Alsayed, N. Malik, et Y. Jararweh, Federated learning review: Fundamentals, enabling technologies, and future applications, Inf. Process. Manag., vol. 59, no 6, p. 103061, nov. (2022). [CrossRef] [Google Scholar]
  16. Q. Yang, Y. Liu, T. Chen, et Y. Tong, Federated Machine Learning: Concept and Applications, ACM Trans. Intell. Syst. Technol., vol. 10, no 2, p. 12:1-12:19, (2019) [Google Scholar]
  17. C. Fachola, A. Tornaría, P. Bermolen, G. Capdehourat, L. Etcheverry, et M. I. Fariello, Federated Learning for Data Analytics in Education, Data, vol. 8, no 2, p. 43, (2023) [CrossRef] [Google Scholar]
  18. S. J. Pan et Q. Yang, A Survey on Transfer Learning, IEEE Trans. Knowl. Data Eng., vol. 22, no 10, p. 1345-1359, (2010) [CrossRef] [Google Scholar]
  19. Y. Liu, Y. Kang, C. Xing, T. Chen, et Q. Yang, Secure Federated Transfer Learning, IEEE Intell. Syst., vol. 35, no 4, p. 70-82, (2020), [CrossRef] [Google Scholar]
  20. Y. Chen, X. Qin, J. Wang, C. Yu and W. Gao, FedHealth: A Federated Transfer Learning Framework for Wearable Healthcare, in IEEE Intelligent Systems, vol. 35, no. 4, pp. 83-93,(2020) [CrossRef] [Google Scholar]
  21. Q. Hu, J. Jiang, et W. Lin, Communication Analysis and Privacy in CAI Based on Data Mining and Federated Learning, Appl. Sci., vol. 13, no 9, p. 5624, (2023) [CrossRef] [Google Scholar]
  22. Y. Chen, A. Rezapour, W. Tzeng, Privacy-preserving ridge regression on distributed data, Information Sciences, vol. 451-452, p. 34-49, (2018) [CrossRef] [Google Scholar]
  23. K. Bonawitz et al. Towards Federated Learning at Scale: System Design. ArXiv abs/1902.01046 (2019) [Google Scholar]
  24. S. R. Pandey, N. H. Tran, M. Bennis, Y. K. Tun, A. Manzoor, et C. S. Hong, A Crowdsourcing Framework for On-Device Federated Learning, IEEE Trans. Wirel. Commun., vol. 19, no 5, p. 3241-3256, (2020) [CrossRef] [Google Scholar]
  25. Y.-W. Chu et al., Mitigating Biases in Student Performance Prediction via Attention-Based Personalized Federated Learning, in Proceedings of the 31st ACM International Conference on Information & Knowledge Management, Atlanta GA USA: ACM, (2022) [Google Scholar]
  26. A. Ekuban,J. Domingue, Towards Decentralised Learning Analytics, in Companion Proceedings of the ACM Web Conference 2023, Austin TX USA: ACM, p. 1435-1438. (2023) [Google Scholar]
  27. S. Guo et D. Zeng, Pedagogical Data Federation toward Education 4.0, in Proceedings of the 2020 The 6th International Conference on Frontiers of Educational Technologies, Tokyo Japan: ACM, p. 51-55. (2020). [Google Scholar]
  28. D. Mistry, M. F. Mridha, M. Safran, S. Alfarhood, A. K. Saha, et D. Che, Privacy-Preserving On-Screen Activity Tracking and Classification in E-Learning Using Federated Learning, IEEE Access, vol. 11, p. 79315-79329, (2023) [CrossRef] [Google Scholar]
  29. A. Nandi et F. Xhafa, A federated learning method for real-time emotion state classification from multi-modal streaming, Methods, vol. 204, p. 340-347, (2022) [CrossRef] [PubMed] [Google Scholar]
  30. W. Sun, Predictive Analysis and Simulation of College Sports Performance Fused with Adaptive Federated Deep Learning Algorithm, J. Sens., vol. 2022, p. 1-11, (2022) [Google Scholar]
  31. B. Xu, S. Yan, S. Li, et Y. Du, A Federated Transfer Learning Framework Based on Heterogeneous Domain Adaptation for Students’ Grades Classification, Appl. Sci., vol. 12, no 21, p. 10711, (2022) [CrossRef] [Google Scholar]
  32. C. Chen, Research on Online Teaching Emotion Detection based on Federated Learning, in Proceedings of the 2023 3rd International Conference on Bioinformatics and Intelligent Computing, Sanya China: ACM, p. 159-164.(2023) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.