Open Access
Issue
E3S Web Conf.
Volume 477, 2024
International Conference on Smart Technologies and Applied Research (STAR'2023)
Article Number 00062
Number of page(s) 9
DOI https://doi.org/10.1051/e3sconf/202447700062
Published online 16 January 2024
  1. United Nations System Staff College, Understanding the Dimensions of Sustainable Development, (2017), https://www.unssc.org/ [Google Scholar]
  2. Md.I. Ziaul, W. SHUWEI, Environmental Sustainability: A Major Component of Sustainable Development. International Journal of Environmental, Sustainability, and Social Science. 4. 620-627. (2023). [CrossRef] [Google Scholar]
  3. S.Joachim. Economic sustainability of the economy: Concepts and indicators. International Journal of Sustainable Development. 8. 10.1504/IJSD.2005.007374.(2005) [Google Scholar]
  4. K.de Fine Licht, A.Folland. Defining “Social Sustainability”: Towards a Sustainable Solution to the Conceptual Confusion. Etikk i praksis - Nordic Journal of Applied Ethics. 13. 21-39. (2019) [CrossRef] [Google Scholar]
  5. J. Satish, Y.Li. What Is Corporate Sustainability and How Do Firms Practice It? A Management Accounting Research Perspective. Journal of Management Accounting Research. 28. 1-11. (2016) [Google Scholar]
  6. S.Kufeoglu. SDG-6 Clean Water and Sanitation. Emerging Technologies, Value Creation for Sustainable Development.10.1007/978-3-031-07127-08. (2022) [Google Scholar]
  7. S.Kufeoglu. SDG-7 Affordable and Clean Energy. Emerging Technologies. 10.1007/978-3-031-07127-0_9. (2022). [Google Scholar]
  8. J. Tang, T. Ma, and Q. Luo, Trends Prediction of Big Data: A Case Study based on Fusion Data, Procedia Computer Science. vol. 174, p. 181-190, (2020) [CrossRef] [Google Scholar]
  9. W. Zhang, C. Yang, Y. Cheng, H. Chen, et W. Wang, Research on the Mechanism of the Sustainable Development Model of Enterprises Based on Big Data Analysis Model, Mob. Inf. Syst., vol. 2021, p. 1-12, (2021) [Google Scholar]
  10. D. Meiyou and Y. Ye, Establishment of big data evaluation model for green and sustainable development of enterprises, J. King Saud Univ. - Sci., vol. 34, no 5, p. 102041, juill. (2022) [CrossRef] [Google Scholar]
  11. L. Zhihan, I. Rahat, C. Victor. Big data analytics for sustainability. Future Generation Computer Systems. 86. 1238-1241. 10.1016/j.future.2018.05.020. (2018) [CrossRef] [Google Scholar]
  12. L. Georgeson, M.Maslin. Putting the United Nations Sustainable Development Goals into practice: A review of implementation, monitoring, and finance. Geo: Geography and Environment. 5. e00049. 10.1002/geo2.49. (2018). [CrossRef] [Google Scholar]
  13. UN-Water. Summary progress update 2021: SDG 6 – water and sanitation for all. (2021).https://www.unwater.org/sites/default/files/app/uploads/2021/12/SDG-6-Summary-Progress-Update-2021_Version-July-2021a.pdf [Google Scholar]
  14. G. Nhamo, C. Nhemachena, et S. Nhamo, Is 2030 too soon for Africa to achieve the water and sanitation sustainable development goal?, Science of The Total Environment, Volume 669, Pages 129-139, (2019) [CrossRef] [Google Scholar]
  15. H. Rush, N. Marshall, Case Study: Innovation in Water, Sanitation and Hygiene, UK Aid. (2015) [Google Scholar]
  16. S. Geetha, S. Gouthami, Internet of things enabled real time water quality monitoring system. Smart Water 2, 1. (2016). [CrossRef] [Google Scholar]
  17. M. S. U. Chowdury et al., IoT Based Real-time River Water Quality Monitoring System, Procedia Comput. Sci., vol. 155, p. 161-168, (2019) [CrossRef] [Google Scholar]
  18. D. Amitrano, et al. Sentinel-1 for Monitoring Reservoirs: A Performance Analysis. Remote Sens. 6, 10676-10693.(2014) [CrossRef] [Google Scholar]
  19. G. Luis, R. Juan, W. Marcus and P. Inge. Earth Observation for Water Resources Management: Current Use and Future Opportunities for the Water Sector. (2016). worldbank.org [Google Scholar]
  20. I. Yaroshenko et al. Real-Time Water Quality Monitoring with Chemical Sensors. Sensors, 20, 3432, (2020) [CrossRef] [PubMed] [Google Scholar]
  21. M. Huseynov,E. Hashimov. Imaginary Intelligence Via Satellites. Modeling Control and Information Technologies. 10.31713/MCIT.2023.014. (2023) [Google Scholar]
  22. The World Bank, Lake Victoria Environmental Management Project Phase II. Agriculture and Environment Operations Division. (2015). https://www.ais.unwater.org/ais/aiscm/getprojectdoc.php?docid=3402 [Google Scholar]
  23. Y. Wada; L. vanBeek, C.M. vanKempen, J. Reckman, S. Vasak, M. Bierkens, Global depletion of groundwater resources. Geophys. Res. Lett. 2010, 37, L20402 [Google Scholar]
  24. MJ. Wellington, LJ. Renzullo. High-Dimensional Satellite Image Compositing and Statistics for Enhanced Irrigated Crop Mapping. Remote Sensing. 2021; 13(7):1300 [CrossRef] [Google Scholar]
  25. N. Kuznetsov, S. Tyaglov, M. Ponomareva, N. Rodionova, K.Sapegina. Development Priorities for the Regional Innovation System Based on the Best Available Technologies. Sustainability, 14, 1116. (2022) [CrossRef] [Google Scholar]
  26. P. K. Adom, F. Amuakwa-Mensah, M. P. Agradi, et A. Nsabimana, Energy poverty, development outcomes, and transition to green energy, Renewable Energy, vol. 178, p. 1337-1352. (2021) [Google Scholar]
  27. United Nation, Ensure access to affordable, reliable, sustainable and modern energy. (2023).https://www.un.org/sustainabledevelopment/energy/ [Google Scholar]
  28. H. Ralitsa, T. Foxon, Beware the value gap: Creating value for users and for the system through innovation in digital energy services business models, Technol. Forecast. Soc. Change, vol. 166, p. 120525. (2021) [CrossRef] [Google Scholar]
  29. K. R. Varshney et al., Targeting Villages for Rural Development Using Satellite Image Analysis, Big Data, vol. 3, no 1, p. 41-53. (2015) [CrossRef] [PubMed] [Google Scholar]
  30. H. Hassani. Big Data and Energy Poverty Alleviation. Big Data Cogn. Comput. (2019) [Google Scholar]
  31. A. A. Munshi et Y. A.-R. I. Mohamed, Big data framework for analytics in smart grids, Electr. Power Syst. Res., vol. 151, p. 369-380,(2017) [CrossRef] [Google Scholar]
  32. K. Zhou et S. Yang, Understanding household energy consumption behavior: The contribution of energy big data analytics, Renew. Sustain. Energy Rev., vol. 56, p. 810-819. (2016) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.