Open Access
Issue
E3S Web Conf.
Volume 477, 2024
International Conference on Smart Technologies and Applied Research (STAR'2023)
Article Number 00099
Number of page(s) 12
DOI https://doi.org/10.1051/e3sconf/202447700099
Published online 16 January 2024
  1. M. E. Abd El-Latief, K. Elsayed, and M. M. Abdelrahman, “Parametric study of a corrugated airfoil in a forward flight at ultra-low Reynolds number,” SN Appl. Sci. , vol. 3, no. 1, p. 112, Jan. 2021, doi: 10.1007/s42452-020-04105 [CrossRef] [Google Scholar]
  2. Y. H. Chen and M. Skote, “Gliding performance of 3-D corrugated dragonfly wing with spanwise variation,” J. Fluids Struct. , vol. 62, pp. 1–13, Apr. 2016, doi: 10.1016/j.jfluidstructs.2015.12.012. [CrossRef] [Google Scholar]
  3. T. T. Dao, T. K. Loan Au, S. H. Park, and H. C. Park, “Effect of Wing Corrugation on the Aerodynamic Efficiency of Two-Dimensional Flapping Wings,” Appl. Sci. , vol. 10, no. 20, p. 7375, Oct. 2020, doi: 10.3390/app10207375. [CrossRef] [Google Scholar]
  4. T. J. Flint, M. C. Jermy, T. H. New, and W. H. Ho, “Computational study of a pitching bio- inspired corrugated airfoil,” Int. J. Heat Fluid Flow , 2017, doi: 10.1016/j.ijheatfluidflow.2016.12.009. [Google Scholar]
  5. G. Galeron, D. Mazzoni, M. Amielh, P. O. Mattei, and F. Anselmet, “Experimental and Numerical Investigations of the Aeroacoustics in a Corrugated Pipe Flow,” 2018, pp. 149–156. [Google Scholar]
  6. B. Rajavel and M. G. Prasad, “Parametric studies on acoustics of corrugated tubes using large eddy simulation (LES),” Noise Control Eng. J. , vol. 62, no. 4, pp. 218–231, Jul. 2014, doi: 10.3397/1/376222. [CrossRef] [Google Scholar]
  7. X. G. Meng and M. Sun, “Aerodynamic effects of wing corrugation at gliding flight at low Reynolds numbers,” Phys. Fluids , vol. 25, no. 7, p. 071905, Jul. 2013, doi: 10.1063/1.4813804. [CrossRef] [Google Scholar]
  8. D. Groen et al., “Flexible composition and execution of high performance, high fidelity multiscale biomedical simulations,” Interface Focus , vol. 3, no. 2, p. 20120087, Apr. 2013, doi: 10.1098/rsfs.2012.0087. [CrossRef] [PubMed] [Google Scholar]
  9. G. Hoekstra, B. Chopard, D. Coster, S. Portegies Zwart, and P. V. Coveney, “Multiscale computing for science and engineering in the era of exascale performance,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. , vol. 377, no. 2142, p. 20180144, Apr. 2019, doi: 10.1098/rsta.2018.0144. [CrossRef] [PubMed] [Google Scholar]
  10. Dorschner, S. S. Chikatamarla, and I. V. Karlin, “Transitional flows with the entropic lattice Boltzmann method,” J. Fluid Mech. , vol. 824, pp. 388–412, Aug. 2017, doi: 10.1017/jfm.2017.356. [CrossRef] [Google Scholar]
  11. N. Gourdain, T. Jardin, R. Serre, S. Prothin, and J.-M. Moschetta, “Application of a lattice Boltzmann method to some challenges related to micro-air vehicles,” Int. J. Micro Air Veh. , vol. 10, no. 3, pp. 285–299, Sep. 2018, doi: 10.1177/1756829318794174. [CrossRef] [Google Scholar]
  12. M. Camps Santasmasas, X. Zhang, B. Parslew, G. F. Lane-Serff, J. Millar, and A. Revell, “Comparison of Lattice Boltzmann and Navier-Stokes for Zonal Turbulence Simulation of Urban Wind Flows,” Fluids , vol. 7, no. 6, p. 181, May 2022, doi: 10.3390/fluids7060181. [CrossRef] [Google Scholar]
  13. L. Wang et al., “Accurate Computation of Airfoil Flow Based on the Lattice Boltzmann Method,” Appl. Sci. , vol. 9, no. 10, p. 2000, May 2019, doi: 10.3390/app9102000. [CrossRef] [Google Scholar]
  14. Schubiger, S. Barber, and H. Nordborg, “Evaluation of the lattice Boltzmann method for wind modelling in complex terrain,” Wind Energy Sci. , vol. 5, no. 4, pp. 1507–1519, Nov. 2020, doi: 10.5194/wes-5-1507-2020 [CrossRef] [Google Scholar]
  15. M. Chávez-Modena, J. L. Martínez, J. A. Cabello, and E. Ferrer, “Simulations of Aerodynamic Separated Flows Using the Lattice Boltzmann Solver XFlow,” Energies , vol. 13, no. 19, p. 5146, Oct. 2020, doi: 10.3390/en13195146. [CrossRef] [Google Scholar]
  16. L. Mountrakis, E. Lorenz, O. Malaspinas, S. Alowayyed, B. Chopard, and A. G. Hoekstra, “Parallel performance of an IB-LBM suspension simulation framework,” J. Comput. Sci. , vol. 9, pp. 45–50, Jul. 2015, doi: 10.1016/j.jocs.2015.04.006. [CrossRef] [Google Scholar]
  17. J. Wu and C. Shu, “A coupled immersed boundary–lattice Boltzmann method and its simulation for biomimetic problems,” Theor. Appl. Mech. Lett. , vol. 5, no. 1, pp. 16–19, Jan. 2015, doi: 10.1016/j.taml.2015.01.008. [CrossRef] [Google Scholar]
  18. X. Shi, X. Huang, Y. Zheng, and S. Zhao, “Effects of cambers on gliding and hovering performance of corrugated dragonfly airfoils,” Int. J. Numer. Methods Heat Fluid Flow , vol. 26, no. 3/4, pp. 1092–1120, May 2016, doi: 10.1108/HFF-10-2015-0414. [CrossRef] [Google Scholar]
  19. S. Succi, N. Moradi, A. Greiner, and S. Melchionna, “Lattice Boltzmann modeling of water- like fluids,” Front. Phys. , vol. 2, Apr. 2014, doi: 10.3389/fphy.2014.00022. [CrossRef] [Google Scholar]
  20. B. Singh, N. Yidris, A. Basri, R. Pai, and K. Ahmad, “Study of Mosquito Aerodynamics for Imitation as a Small Robot and Flight in a Low-Density Environment,” Micromachines , vol. 12, no. 5, p. 511, May 2021, doi: 10.3390/mi12050511. [CrossRef] [PubMed] [Google Scholar]
  21. M. F. Bin Abas, B. Singh, K. A. Ahmad, E. Y. K. Ng, T. Khan, and T. A. Sebaey, “Dwarf Kingfisher-Inspired Bionic Flapping Wing and Its Aerodynamic Performance at Lowest Flight Speed,” Biomimetics , vol. 7, no. 3, p. 123, Aug. 2022, doi: 10.3390/biomimetics7030123. [CrossRef] [PubMed] [Google Scholar]
  22. Y. Feng, J. Miranda‐Fuentes, S. Guo, J. Jacob, and P. Sagaut, “ProLB: A Lattice Boltzmann Solver of Large‐Eddy Simulation for Atmospheric Boundary Layer Flows,” J. Adv. Model. Earth Syst. , vol. 13, no. 3, Mar. 2021, doi: 10.1029/2020MS002107. [Google Scholar]
  23. J. Latt et al., “Palabos: Parallel Lattice Boltzmann Solver,” Comput. Math. with Appl. , vol. 81, pp. 334–350, Jan. 2021, doi: 10.1016/j.camwa.2020.03.022. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.