Open Access
Issue
E3S Web Conf.
Volume 478, 2024
6th International Conference on Green Energy and Sustainable Development (GESD 2023)
Article Number 01006
Number of page(s) 8
DOI https://doi.org/10.1051/e3sconf/202447801006
Published online 16 January 2024
  1. Dai Xiaohu, Zhang Chen, Zhang Linwei, et al. Thoughts on the development direction of sludge treatment and resource recovery under the background of carbon neutrality[J]. Water & Wastewater Engineering, 2021, 57(3): 1-5. [Google Scholar]
  2. Shan Yuli, Huang Qi, Guan Dabo, et al. China CO2 emission accounts 2016—2017[J]. Scientific Data, 2020, 7(1): 54. [CrossRef] [PubMed] [Google Scholar]
  3. Niu Kunyu, Wu Jian, Qi Lu, et al. Energy intensity of wastewater treatment plants and influencing factors in China[J]. Science of the Total Environment, 2019, 670: 961-970. [CrossRef] [Google Scholar]
  4. Loosdrecht M, Brdjanovic D. Anticipating the next century of wastewater treatment[J]. Science, 2014, 344(6191): 1452-1453. [CrossRef] [Google Scholar]
  5. Gong Hui, Jin Zhengyu, Xu Heng, et al. Redesigning C and N mass flows for energy-neutral wastewater treatment by coagulation adsorption enhanced membrane (CAEM)-based preconcentration process[J]. Chemical Engineering Journal, 2018, 342: 304-309. [CrossRef] [Google Scholar]
  6. Hao Xiaodi, Wei Jing, Cao Yali. A successful case of carbon-neutral operation in America: Sheboygan WWTP s[J]. China Water&Wastewater, 2014, 30(24): 1-6. [Google Scholar]
  7. Hao Xiaodi, Jin Ming, Hu Yuansheng. Framework of future waste⁃water treatment in the Netherlands: NEWs and their practices[J]. China Water&Wastewater, 2014, 30(20): 7-15. [Google Scholar]
  8. Hao Xiaodi, Ren Bingqian, Cao Yali. An engineering model of sustainable wastewater treatment: Steinhof WWTP at Braunsch⁃weig in Germany[J]. China Water&Wastewater, 2014, 30(22): 6-11. [Google Scholar]
  9. Nowak O, Enderle P, Varbanov P. Ways to optimize the energy balance of municipal wastewater systems: Lessons learned from Austrian applications[J]. Journal of Cleaner Production, 2015, 88: 125-131. [CrossRef] [Google Scholar]
  10. Qu Jiuhui, Wang Hongchen, Wang Kaijun, et al. Municipal wastewater treatment in China: Development history and future perspectives[J]. Frontiers of Environmental Science&Engineering, 2019, 13(6): 1-7. [Google Scholar]
  11. Guo Chaoran, Huang Yong, Zhu Wenjuan, et al. Organics recovery from municipal wastewater: research advances in capture technologies[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1619-16335. [Google Scholar]
  12. Rahman A, Meerburg F A, Ravadagundhi S, et al. Bioflocculation management through high-rate contact-stabilization: a promising technology to recover organic carbon from low-strength wastewater[J]. Water Research, 2016, 104: 485-494. [CrossRef] [PubMed] [Google Scholar]
  13. Alvarado V I, Hsu S C, Lam C M, et al. Beyond energy balance: environmental trade-offs of organics capture and low carbon-to-nitrogen ratio sewage treatment systems[J]. Environmental Science&Technology, 2020, 54(8): 4746-4757. [CrossRef] [PubMed] [Google Scholar]
  14. Sarpong G, Gude V G. Near future energy selfsufficient wastewater treatment schemes[J]. International Journal of Environmental Research, 2020, 14(4): 479-488. [CrossRef] [Google Scholar]
  15. Huang Baocheng. Recovery and versatile reuse of organic carbon from municipal wastewater[D]. Hefei: University of Science and Technology of China, 2018. [Google Scholar]
  16. Lu Xinxin. Fundamental research of low consumption domestic sewage treatment technology based on enhanced primary treatment[D]. Xi’an: Xi’an University of Architecture and Technology, 2020. [Google Scholar]
  17. Sancho I, Lopez-Palau S, Arespacochaga N, et al. New concepts on carbon redirection in wastewater treatment plants: a review [J]. Science of the Total Environment, 2019, 647: 1373-1384. [CrossRef] [Google Scholar]
  18. Chen Jialiang. Experimental research on separating organic carbon from municipal wastewater by highrate activated sludge system[D]. Tangshan: North China University of Science and Technology, 2020. [Google Scholar]
  19. Guven H, Ersahin M E, Dereli R K, et al. Effect of hydraulic retention time on the performance of high-rate activated sludge system: a pilot-scale study[J]. Water, Air&Soil Pollution, 2017, 228(11): 1-10. [CrossRef] [PubMed] [Google Scholar]
  20. Guven H, Fakioglu M, Sinop I, et al. Retrofitting of five preliminary wastewater treatment plants in Istanbul (Turkey)to high-rate activated sludge system and/or post oxidation[J]. Ozone: Science&Engineering, 2020, 42(3): 255-266. [CrossRef] [Google Scholar]
  21. Liu Zhixiao. Carbon capture and carbon redirection:new way to optimize the energy selfsufficient of wastewater treatment[J]. China Water&Wastewater, 2017, 33(8): 43-52. [Google Scholar]
  22. He Qiulai, Wang Hongyu, Xu Congyuan, et al. Feasibility and optimization of wastewater treatment by chemically enhanced primary treatment(CEPT): a case study of Huangshi[J]. Chemical Speciation& Bioavailability, 2016, 28(1/2/3/4): 209-215. [CrossRef] [Google Scholar]
  23. Nunez C, Dornfeld M, Shankles K C, et al. Cost savings and performance improvement of large system iron salt use for integrated sulfide control and chemically enhanced primary treatment by using peroxide regenerated iron technology[J]. Proceedings of the Water Environment Federation, 2010, 2010(16): 1110-1121. [CrossRef] [Google Scholar]
  24. Budych-Gorzna M, Szatkowska B, Jaroszynski L, et al. Towards an energy selfsufficient resource recovery facility by improving energy and economic balance of a municipal WWTP with chemically enhanced primary treatment[J]. Energies, 2021, 14(5): 1445. [CrossRef] [Google Scholar]
  25. Rahman A, De Clippeleir H, Thomas W, et al. A-stage and high-rate contact-stabilization performance comparison for carbon and nutrient redirection from high-strength municipal wastewater[J]. Chemical Engineering Journal, 2019, 357: 737-749. [CrossRef] [Google Scholar]
  26. Faust L, Temmink H, Zwijnenburg A, et al. High loaded MBRs for organic matter recovery from sewage:effect of solids retention time on bioflocculation and on the role of extracellular polymers[J]. Water Research, 2014, 56: 258-266. [CrossRef] [PubMed] [Google Scholar]
  27. Wan Junfeng, Gu Jun, Zhao Qian, et al. COD capture:a feasible option towards energy selfsufficient domestic wastewater treatment[J]. Scientific Reports, 2016, 6: 25054. [CrossRef] [PubMed] [Google Scholar]
  28. Solon K, Jia Mingsheng, Volcke E I P. Process schemes for future energy-positive water resource recovery facilities[J]. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 2019, 79(9): 1808-1820. [CrossRef] [PubMed] [Google Scholar]
  29. Hendriks A, Zeeman G. Pretreatments to enhance the digest⁃ibility of lignocellulosic biomass[J]. Bioresource Technology, 2009, 100(1):10-18. [CrossRef] [PubMed] [Google Scholar]
  30. Yu Chuandai. Methane production from semicontinuous anaerobic digestion reactor using municipal sludge pretreated by low temperature thermal hydrolization[D]. Fuzhou: Fujian Normal University, 2017. [Google Scholar]
  31. Xiao Benyi, Tang Xinyi, Yi Hao, et al. Comparison of two advanced anaerobic digestions of sewage sludge with high-temperature thermal pretreatment and low-temperature thermal-alkaline pretreatment[J]. Bioresource Technology, 2020, 304: 122979. [CrossRef] [PubMed] [Google Scholar]
  32. He Meilong. Methanogenesis performance enhancement of municipal sludge anaerobic digestion based on substrate conditioning[D]. Fuzhou: Fujian Normal University, 2018. [Google Scholar]
  33. Fitamo T, Boldrin A, Boe K, et al. Co-digestion of food and garden waste with mixed sludge from wastewater treatment in continuously stirred tank reactors[J]. Bioresource Technology, 2016, 206: 245-254. [CrossRef] [PubMed] [Google Scholar]
  34. Hao Xiaodi, Li Ji, Van Loosdrecht M C M, et al. Energy recovery from wastewater:heat over organics[J]. Water Research, 2019, 161: 74-77. [CrossRef] [PubMed] [Google Scholar]
  35. Song Xinxin, Lin Jia, Liu Jie, et al. The current situation and engineering practice of sewage treatment technology facing the future[J]. Acta Scientiae Circumstantiae, 2021, 41(1): 39-53. [Google Scholar]
  36. Hao Xiaodi, Liu Ranbin, Huang Xin. Evaluation of the potential for operating carbon neutral WWTPs in China[J]. Water Research, 2015, 87: 424-431. [CrossRef] [PubMed] [Google Scholar]
  37. Liu Ruling, Song Peng, Dai Weidong. Application of sewage-source heat pump technology in Qingdao Tuandao sewage treatment plant[J]. China Water&Wastewater, 2015, 31(12): 86-89. [Google Scholar]
  38. Zhang Kaihai. Application of distributed photovoltaic power generation system in a wastewater treatment plant[J]. China Water&Wastewater, 2017, 33(22): 81-84. [Google Scholar]
  39. Liu Xiaoming, Yan Junquan, Huang Penglan. Innovative application of solar power generation in water treatment industry[J]. China Water&Wastewater, 2015, 31(18): 90-94. [Google Scholar]
  40. Mo Weiwei, Zhang Qiong. Energy-nutrientswater nexus: Integrated resource recovery in municipal wastewater treatment plants[J]. Journal of Environmental Management, 2013, 127: 255-267. [PubMed] [Google Scholar]
  41. Nakakubo T, Tokai A, Ohno K. Comparative assessment of technological systems for recycling sludge and food waste aimed at greenhouse gas emissions reduction and phosphorus recovery[J]. Journal of Cleaner Production, 2012, 32: 157-172. [CrossRef] [Google Scholar]
  42. Chai Chunyan. Study on the characteristics of greenhouse gas emissions and heat island effect of municipal wastewater treatment plants[D]. Harbin: Harbin Institute of Technology, 2017. [Google Scholar]
  43. Cornel P, Schaum C. Phosphorus recovery from wastewater: Needs, technologies and costs[J]. Water Science&Technology, 2009, 59(6): 069-1076. [Google Scholar]
  44. Zhou Kaixin, Barjenbruch M, Kabbe C, et al. Phosphorus recovery from municipal and fertilizer wastewater: China’s potential and perspective[J]. Journal of Environmental Sciences, 2017, 52(2): 151-159. [CrossRef] [Google Scholar]
  45. Hao Xiaodi, Yu Jinglun, Liu Ranbin, et al. Advances of phosphorus recovery from the incineration ashes of excess sludge and its associated technologies[J]. Acta Scientiae Circumstantiae, 2020, 40(4): 1149-1159. [Google Scholar]
  46. Meneses M, Pasqualino J C, Castells F. Environmental assessment of urban wastewater reuse: Treatment alternatives and applications[J]. Chemosphere, 2010, 81(2): 266-272. [CrossRef] [PubMed] [Google Scholar]
  47. Lu Ruiqing, Yang Guang, Gong Hui, et al. Enlightenment of Singapore’s NEWater technology to the production of high quality reclaimed water in China[J]. China Water&Wastewater, 2019, 35(14): 36-40. [Google Scholar]
  48. Hao Xiaodi, Meng Xiangting, Fu Kunming. Targeted energy consumption and associated technologies developed in water reclamation plants in Singapore[J]. China Water&Wastewater, 2014, 30(24): 7-11. [Google Scholar]
  49. Hofman J, Hofman-Caris R, Nederlof M, et al. Water and energy as inseparable twins for sustainable solutions[J]. Water Science and Technology, 2011, 63(1): 88-92. [CrossRef] [PubMed] [Google Scholar]
  50. Hao Xiaodi, Li Ji, Van Loosdrecht M C M, et al. Energy recovery from wastewater: Heat over organics[J]. Water Research, 2019, 161: 74-77. [CrossRef] [PubMed] [Google Scholar]
  51. Hao Xiaodi, Liu Raibin, Huang Xin. Evaluation of the potential for operating carbon neutral WWTPs in China[J]. Water Research, 2015, 87: 424-431. [CrossRef] [PubMed] [Google Scholar]
  52. Averfalk H, Ingvarsson P, Persson U, et al. Large heat pumps in Swedish district heating systems[J]. Renewable&Sustainable Energy Reviews, 2017, 79: 1275-1284. [CrossRef] [Google Scholar]
  53. Spriet J, Mcnabola A, Neugebauer G, et al. Spatial and temporal considerations in the performance of wastewater heat recovery systems[J]. Journal of Cleaner Production, 2020, 247: 119583. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.