Open Access
Issue |
E3S Web Conf.
Volume 480, 2024
II International Scientific and Practical Conference “Energy, Ecology and Technology in Agriculture” (EEA2023)
|
|
---|---|---|
Article Number | 02029 | |
Number of page(s) | 10 | |
Section | Ecology and Environmental Protection | |
DOI | https://doi.org/10.1051/e3sconf/202448002029 | |
Published online | 18 January 2024 |
- A.G. Capodaglio, A. Callegari, D. Cecconet, D. Molognoni, “Sustainability of decentralized wastewater treatment technologies”, Water Pract. Technol., 12, 463–477 (2017) [CrossRef] [Google Scholar]
- Y. Kobayashi, N.J. Ashbolt, E.G.R. Davies, Y. Liu, “Life cycle assessment of decentralized greywater treatment systems with reuse at different scales in cold regions”, Environ. Int., 134 (2020) [Google Scholar]
- L. Rizzo, W. Gernjak, P. Krzeminski, S. Malato, C.S. McArdell, J.A.S. Perez, H. Schaar, D. Fatta-Kassinos, “Best available technologies and treatment trains to address current challenges in urban wastewater reuse for irrigation of crops in EU countries”, Sci. Total Environ., 710, 136312 (2020) [CrossRef] [Google Scholar]
- C. Fiorentino, M. Mancini, L. Luccarini, “Urban wastewater treatment plant provided with tertiary finishing lagoons: management and reclamation for irrigation reuse”, J. Chem. Technol. Biotechnol., 91, 1615–1622 (2016) [CrossRef] [Google Scholar]
- S. Cashman, X. Ma, J. Mosley, J. Garland, B. Crone, X. Xue, “Energy and greenhouse gas life cycle assessment and cost analysis of aerobic and anaerobic membrane bioreactor systems: Influence of scale, population density, climate, and methane recovery”, Bioresour. Technol., 254, 56–66 (2018) [CrossRef] [Google Scholar]
- D. Cecconet, A. Callegari, P. Hlavínek, A.G. Capodaglio, “Membrane bioreactors for sustainable, fit-for-purpose greywater treatment: a critical review”, Clean Technol. Environ. Policy, 21, 745–762 (2019) [CrossRef] [Google Scholar]
- Yibo Wu, Zhibao Cheng, Chengwei Wu, Hongkai Zhao, Peng Bao, Xiaoyong Cui, “Water conditions and arbuscular mycorrhizal symbiosis affect the phytoremediation of petroleum-contaminated soil by Phragmites australis”, Environmental Technology & Innovation, 32, 103437 (2023) [CrossRef] [Google Scholar]
- Muhammad Mohsin, Nicole Nawrot, Ewa Wojciechowska, Suvi Kuittinen, Katarzyna Szczepańska, Grażyna Dembska, Ari Pappinen, “Cadmium accumulation by Phragmites australis and Iris pseudacorus from stormwater in floating treatment wetlands microcosms: Insights into plant tolerance and utility for phytoremediation” Journal of Environmental Management, 331, 117339 (2023) [CrossRef] [PubMed] [Google Scholar]
- Ziwei Ding, Qingye Sun, “Effects of flooding depth on metal(loid) absorption and physiological characteristics of Phragmites australis in acid mine drainage phytoremediation”, Environmental Technology & Innovation, 22, 101512 (2021) [CrossRef] [Google Scholar]
- Akeem O. Bello, Bassam S. Tawabini, Amjad B. Khalil, Christopher R. Boland, Tawfik A. Saleh, “Phytoremediation of cadmium-, lead- and nickel-contaminated water by Phragmites australis in hydroponic systems”, Ecological Engineering, 120, 126–133 (2018) [CrossRef] [Google Scholar]
- Ram Chandra, Sangeeta Yadav, “Potential of Typha angustifolia for phytoremediation of heavy metals from aqueous solution of phenol and melanoidin” Ecological Engineering, 36, 10, 1277–1284 (2010) [CrossRef] [Google Scholar]
- Misery Mulele Nabuyanda, Johan van Bruggen, Peter Kelderman, Kenneth Irvine, “Investigating Co, Cu, and Pb retention and remobilization after drying and rewetting treatments in greenhouse laboratory-scale constructed treatments with and without Typha angustifolia, and connected phytoremediation potential”, Journal of Environmental Management, 236, 510–518 (2019) [CrossRef] [PubMed] [Google Scholar]
- Jiu-Qiang Xiong, Pengfei Cui, Shaoguo Ru, Sanjay P. Govindwar, Mayur B. Kurade, Min Jang, Sang-Hyoun Kim, Byong-Hun Jeon, “Unravelling metabolism and microbial community of a phytobed co-planted with Typha angustifolia and Ipomoea aquatica for biodegradation of doxylamine from wastewater”, Journal of Hazardous Materials, 401, 123404 (2021) [CrossRef] [PubMed] [Google Scholar]
- Giuseppe Bonanno, Giuseppe Luigi Cirelli, “Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia”, Ecotoxicology and Environmental Safety, 143, 92–101 (2017) [CrossRef] [PubMed] [Google Scholar]
- Hamed Haghnazar, Kourosh Sabbagh, Karen H. Johannesson, Mojtaba Pourakbar, Ehsan Aghayani, “Phytoremediation capability of Typha latifolia L. to uptake sediment toxic elements in the largest coastal wetland of the Persian Gulf”, Marine Pollution Bulletin, 188, 114699 (2023) [CrossRef] [PubMed] [Google Scholar]
- Monika Hejna, Alessandra Moscatelli, Nadia Stroppa, Elisabetta Onelli, Salvatore Pilu, Antonella Baldi, Luciana Rossi, “Bioaccumulation of heavy metals from wastewater through a Typha latifolia and Thelypteris palustris phytoremediation system”, Chemosphere, 241, 125018 (2020) [CrossRef] [PubMed] [Google Scholar]
- Claudio Leto, Teresa Tuttolomondo, Salvatore La Bella, Raffaele Leone, Mario Licata, “Effects of plant species in a horizontal subsurface flow constructed wetland–phytoremediation of treated urban wastewater with Cyperus alternifolius L. and Typha latifolia L. in the West of Sicily (Italy)”, Ecological Engineering, 61, 282–291 (2013) [CrossRef] [Google Scholar]
- Sana Irshad, Zuoming Xie, Muhammad Kamran, Asad Nawaz, Faheem, Sajid Mehmood, Huma Gulzar, Muhammad Hamzah Saleem, Muhammad Rizwan, Zaffar Malik, Aasma Parveen, Shafaqat Ali, “Biochar composite with microbes enhanced arsenic biosorption and phytoextraction by Typha latifolia in hybrid vertical subsurface flow constructed wetland”, Environmental Pollution, 291, 118269 (2021) [CrossRef] [Google Scholar]
- Xiangdong Wei, Deng Yang, Xiaohui Yin, Hongquan Yang, Yayu Fang, Nan Chen, Hao Zhang, Zhiyong Hu, “Comparative study of efficiencies of purification of cadmium contaminated irrigation water by different purification systems”, Science of The Total Environment, 907, 16794 (2024) [Google Scholar]
- Xiangdong Pan, Shengyun Liu, Ran Li, Hailong Sun, Jingjie Feng, Xiaolong Cheng, Jia Yao, “Research on the purification enhancement of ecological ponds: Integrating water cycle optimization and plants layout”, Journal of Environmental Management, 344, 118487 (2023) [PubMed] [Google Scholar]
- Vimal Chandra Pandey, Deblina Maiti, “5 - Phragmites species—promising perennial grasses for phytoremediation and biofuel production” Editor(s): Vimal Chandra Pandey, D.P. Singh, Phytoremediation Potential of Perennial Grasses, Elsevier, 97–114 (2020) [CrossRef] [Google Scholar]
- Chiara Barbiero, Sonil Nanda, Franco Berruti “4 - Pyrolytic valorization of an invasive crop (Phragmites) to high-value biofuels and bioproducts” Editor(s): Sonil Nanda, Dai-Viet Vo, Innovations in Thermochemical Technologies for Biofuel Processing, Elsevier, 89–115 (2022) [CrossRef] [Google Scholar]
- E. Gorbe Sánchez, E. Heuvelink, Arie de Gelder, C. Stanghellini “New Non-invasive Tools for Early Plant Stress Detection” Procedia Environmental Sciences, 29, 249–250 (2015) [CrossRef] [Google Scholar]
- Winnie Akinyi Nyonje, Roland Schafleitner, Mary Abukutsa-Onyango, Ray-Yu Yang, Anselimo Makokha, Willis Owino “Precision phenotyping and association between morphological traits and nutritional content in Vegetable Amaranth (Amaranthus spp.)” Journal of Agriculture and Food Research, 5, 100165 (2021) [CrossRef] [Google Scholar]
- Gabriela Cordon, M. Gabriela Lagorio, José M. Paruelo “Chlorophyll fluorescence, photochemical reflective index and normalized difference vegetative index during plant senescence”, Journal of Plant Physiology, 199, 100–110 (2016) [CrossRef] [PubMed] [Google Scholar]
- J. Peñuelas, J.A. Gamon, A.L. Fredeen, J. Merino, C.B. Field, “Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves”, Remote Sensing of Environment, 48, 2, 135–146 (1994) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.