Open Access
Issue
E3S Web Conf.
Volume 572, 2024
2024 The 7th International Conference on Renewable Energy and Environment Engineering (REEE 2024)
Article Number 03001
Number of page(s) 8
Section Power Load Forecasting and Building Energy Efficiency
DOI https://doi.org/10.1051/e3sconf/202457203001
Published online 27 September 2024
  1. Y. Lin, H. Luo, D. Wang, H. Guo, and K. Zhu, “An Ensemble Model Based on Machine Learning Methods and Data Preprocessing for Short-Term Electric Load Forecasting,” Energies, vol. 10, no. 1186, 2017. [Google Scholar]
  2. M. D. Reddy, “Load Forecasting using Linear Regression Analysis in Time series model for RGUKT, R.K. Valley Campus HT Feeder,” International Journal of Engineering Research & Technology (IJERT), vol. 6, no. 5, 2017 [Google Scholar]
  3. G. Nalcaci, A. Özmen, and G. W. Weber, “Long-term Load Forecasting: Models Based on MARS, ANN and LR methods,” Central European Journal of Operations Research (CEJOR), Springer-Verlag GmbH Germany, vol. 27, no. 2019, pp. 1033–1049, 2018. [CrossRef] [Google Scholar]
  4. E. Almeshaiei and H. Soltan, “A Methodology for Electric Power Load Forecasting,” Alexandria Engineering Journal, vol. 50, no. 2011, pp. 137–144, 2011. [CrossRef] [Google Scholar]
  5. J. Zhang, “Research on Power Load Forecasting Based on the Improved Elman Neural Network,” The Italian Association of Chemical Engineering (AIDIC), vol. 51, no. 2016, pp. 589-594, 2016. [Google Scholar]
  6. M. Y. Khamaira, A. S. Krzma, and A. M. Alnass, “Long Term Peak Load Forecasting for the Libyan Network,” in Conference for Engineering Sciences and Technology (CEST), 2018, vol. 1, pp. 185-193: AIJR Publisher. [CrossRef] [Google Scholar]
  7. O. Demirel, A. Kakilli, and M. Tektas, “Electric Energy Load Forecasting Using ANFIS and ARMA Methods,” Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 25, no. 3, pp. 601-610, 2010. [Google Scholar]
  8. Q. Wang, Y. Wang, and L. Zhang, “Research on Post-Evaluation Model and Method of Electric Powe Demand Forecasting,” presented at the Chinese Control and Decision Conference (CCDC), China, 2008. [Google Scholar]
  9. Markus, Elisha Didam, O. U. Okereke, and John T. Agee. “Predicting telephone traffic congestion using multi-layer feedforward neural networks.” Advanced Materials Research. Vol. 367. Trans Tech Publications Ltd, 2012 [CrossRef] [Google Scholar]
  10. Koyana, Ntombikayise, Elisha Didam Markus, and Adnan M. Abu- Mahfouz. “A Survey of Network and Intelligent air pollution monitoring in South Africa.” 2019 International Multidisciplinary Information Technology and Engineering Conference (IMITEC). IEEE, 2019. [Google Scholar]
  11. Ntshako, N., Markus, E. D., Masinde, M., & Abu-Mahfouz, A. M. (2019, November). Potable water quality monitoring: A survey of intelligent techniques. In 2019 International Multidisciplinary Information Technology and Engineering Conference (IMITEC) (pp. 1-6). IEEE. [Google Scholar]
  12. E.A. Feinberg and D. Genethliou (2005) “Load forecasting In: Applied Mathematics forRestructured Electric Power Systems”: Optimization, Control, and Computational Intelligence, J.H. Chow et al. (eds.), Springer. [Google Scholar]
  13. P.B.Pabela, “Electrical Power Distribution”, TMH, New Delhi, 4e. [Google Scholar]
  14. L.P. Singh, “Advanced Power System Analysis and Dynamics”, New Age International Publishers, 5e. [Google Scholar]
  15. H.K. Alfares, M. Nazeeruddin,“ Electrical load forecasting: literature survey & classification of methods” International Journal of Systems Science, volume 33, number 1, pages 23-34, 2002. [CrossRef] [Google Scholar]
  16. Badar ul Islami, “Comparison of conventional and modern load forecasting techniques based on artificial intelligence and expert system” IJCSI, Vol. 8, issue 5, Sep.2011. [Google Scholar]
  17. Buitrago, Jaime, and Shihab Asfour. 2017, “Short-Term Forecasting of Electric Loads Using Nonlinear Autoregressive Artificial Neural Networks with Exogenous Vector Inputs.” Energies, vol. 10, no. 1, p. 40., doi:10.3390/en10010040. [CrossRef] [Google Scholar]
  18. Ibrahim, M.; Jemei, S.; Wimmer, G.; Hissel, D. Nonlinear autoregressive neural network in an energy management strategy for battery/ultra-capacitor hybrid electrical vehicles. Electr. Power Syst. Res. 2016, 136, 262–269. [CrossRef] [CrossRef] [Google Scholar]
  19. Cevik, Hasan H., and Mehmet unkas. ”A Fuzzy Logic Based ShortTerm Load Forecast for the Holidays.” International Journal of Machine Learning and Computing 6.1 (2016): 57. [Google Scholar]
  20. James, M. 2002. “Back-Propagation for the Uninitiated”. http://www.generation5.org [Google Scholar]
  21. S.Alvisi, G. Mascellani, M. Franchini and A. Bardossy, ”Water level forecasting through fuzzy logic and artificial neural network approaches”, Hydrology and Earth System Science Discussions, 2, pp1107–1145, June 2006. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.