Open Access
Issue
E3S Web Conf.
Volume 574, 2024
1st International Scientific Conference “Green Taxonomy for Sustainable Development: From Green Technologies to Green Economy” (CONGREENTAX-2024)
Article Number 04002
Number of page(s) 12
Section Ecological Footprint and Environmental Impact
DOI https://doi.org/10.1051/e3sconf/202457404002
Published online 02 October 2024
  1. M.M. Biliaiev, T.I. Rusakova, I.V. Kalashnikov, I.O. Bondarenko, E.Y. Gunko, Numerical modeling of air pollution from dumps. Science and Transport Progress 4, 7 (2019) https://doi.org/10.15802/stp2019/178855 [Google Scholar]
  2. Kh. Hashada, B. Yanga, J. Gallagherb, R. Baldauf, P. Deshmukh, K. Max Zhanga. Impact of roadside conifers vegetation growth on air pollution mitigation. Landscape and Urban Planning 229, 104594 (2023) https://doi.org/10.1016/j.landurbplan.2022.104594 [CrossRef] [Google Scholar]
  3. L.D. Romanchuck, T.P. Fedonyuk, R.G. Fedonyuk, Model of influence of landscape vegetation on mass transfer processes. Biosystems Diversity 25, 203 (2017) https://doi:10.15421/011731 [CrossRef] [Google Scholar]
  4. Y. Ouyang, Phytoremediation: modeling plant uptake and contaminant transport in the soil–plant–atmosphere continuum. J. Hydrol. 266, 66 (2002) https://doi.org/10.1016/S0022-1694(02)00116-6 [CrossRef] [Google Scholar]
  5. B.V. Tangahu, S.R.Sh. Abdullah, H. Basri, M. Idris, N. Anuar, M. Mukhlisin. A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. Int. J. Chem. Eng. 2011, 939161 (2011) https://doi.org/10.1155/2011/939161 [CrossRef] [Google Scholar]
  6. Zh. Tong, R.W. Baldauf, V. Isakov, P. Deshmukh, K. Max Zhang, Roadside vegetation barrier designs to mitigate near-road air pollution impacts. Sci. Total Environ. 541, 920 (2016) https://doi.org/10.1016/j.scitotenv.2015.09.067 [CrossRef] [Google Scholar]
  7. J.H. Amorim, V. Rodrigues, R. Tavares, J. Valente, C. Borrego, CFD modelling of the aerodynamic effect of trees on urban air pollution dispersion. Sci. Total Environ. 461–462, 541 (2013) https://doi.org/10.1016/j.scitotenv.2013.05.031 [CrossRef] [Google Scholar]
  8. M.Y. Jin, L. Zhang, Z.R. Peng, H.D. He, P. Kumar, J. Gallagher, The impact of dynamic traffic and wind conditions on green infrastructure performance to improve local air quality. Sci. Total Environ. 917, 170211 (2024) https://doi.org/10.1016/j.scitotenv.2024.170211 [CrossRef] [Google Scholar]
  9. H. Hiraokaa, M. Ohashi. A (k–ε) turbulence closure model for plant canopy flows. J. Wind Eng. Ind. Aerodyn. 96, 2139 (2008) [CrossRef] [Google Scholar]
  10. M. Ghasemian, S. Amini, M. Princevac, The influence of roadside solid and vegetation barriers on near-road air quality. Atmospheric Environment 170, 108 (2017) [CrossRef] [Google Scholar]
  11. D. Ranasinghe, E.S. Lee, Y. Zhu, I. Frausto-Vicencio, W. Choi, W. Sun, S. Mara, U. Seibt, S.E. Paulson, Effectiveness of vegetation and sound wall-vegetation combination barriers on pollution dispersion from freeways under early morning conditions. Sci Total Environ. 658, 1549 (2019) https://doi.org/10.1016/j.scitotenv.2018.12.159 [CrossRef] [PubMed] [Google Scholar]
  12. R.H. Shaw, G. Den Hartog, K.M. King, G.W. Thurtell, Measurements of mean wind flow and three-dimensional turbulence intensity within a mature corn canopy. J. AGRIC. METEOROL. 13, 419 (1974) https://doi.org/10.1016/0002-1571(74)90082-X [CrossRef] [Google Scholar]
  13. A. Issakhov, A. Abylkassymova, Numerical analysis of solid barrier heights and trees with porosity properties influence on the automobile’s emission dispersion in the residential area. Ecological Modelling 484, 110395 (2023) https://doi.org/10.1016/j.ecolmodel.2023.110395 [CrossRef] [Google Scholar]
  14. F. Barbano, S.D. Sabatino, R. Stoll, E.R. Pardyjak, A numerical study of the impact of vegetation on mean and turbulence fields in a European-city neighbourhood. Building and Environment 186, 107293 (2020) https://doi.org/10.1016/j.buildenv.2020.107293 [CrossRef] [Google Scholar]
  15. T. Shafiev, Sh. Nazarov, Studies of the influence of vegetation cover on the process of transfer and diffusion of harmful substances in the atmosphere. Web of Conferences 431, 01059 (2023) ITSE-2023 https://doi.org/10.1051/e3sconf/202343101059 [Google Scholar]
  16. N. Ravshanov, I. Nabieva, D. Karshiev, Conjugate Problem for Optimal Placement of Industrial Production Facilities. International Journal of Theoretical and Applied Issues of Digital Technologies 7, 15 (2024) https://doi.org/10.62132/ijdt.v7i2.175 [Google Scholar]
  17. N. Ravshanov, N. Tashtemirova, D.A. Karshiyev, Modeling the process of propagation of aerosol particles in the atmospheric boundary layer, taking into account their absorption and capture by vegetation. Problems of Computational and Applied Mathematics 2, 41 (2024) [Google Scholar]
  18. Y. Skob, M. Ugryumov, E. Granovskiy, Numerical Evaluation of Probability of Harmful Impact Caused by Toxic Spill Emergencies. Environ. Clim. Technol. 23, 1 (2019) [Google Scholar]
  19. G.I. Marchuk, Matematicheskoye modelirovaniye v probleme okruzhayushchey sredy (Moscow, Nauka. Glavnaya redaktsiya fiziko-matematicheskoy literatury, 1982) [Google Scholar]
  20. Z. Ravshanov, N. Toshtemirova, A. Mukhamadiyev, An improved mathematical model of the process of propagation of fine particles in the atmosphere. Theoretical & Applied Science 09, 63 (2018) [CrossRef] [Google Scholar]
  21. N. Ravshanov, M. Shertaev, N. Toshtemirova, Mathematical Model for the Study and Forecast of the Concentration of Harmful Substances in the Atmosphere. American Journal of Modeling and Optimization 3, 35 (2015) [Google Scholar]
  22. F. Muradov, N. Tashtemirova, Numerical Algorithm for Calculation the Density of Harmful Substances in the Atmosphere. 2021 Int. Conf. on Information Science and Communications Technologies (ICISCT), Tashkent, Uzbekistan, 2021, pp. 01-03 https://doi.org/10.1109/ICISCT52966.2021.9670278 [Google Scholar]
  23. N. Ravshanov, N. Narzullayeva, N. Tashtemirova, F. Muradov, Y. Islamov, Software and instrumental complex for decision-making on environmental protection from technogenic factors. AIP Conf. Proc. 2467, 060003 (2022) https://doi.org/10.1063/5.0094971 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.