Open Access
Issue |
E3S Web Conf.
Volume 576, 2024
The 13th Engineering International Conference “Sustainable Development Through Green Engineering and Technology” (EIC 2024)
|
|
---|---|---|
Article Number | 01001 | |
Number of page(s) | 11 | |
Section | Energy Management System | |
DOI | https://doi.org/10.1051/e3sconf/202457601001 | |
Published online | 03 October 2024 |
- Z. Ke, C. L. Chen, K. Li, S. Wang, and C. H. Chen, “Vortex dynamics and heat transfer of longitudinal vortex generators in a rectangular channel,” Int. J. Heat Mass Transf., vol. 132, pp. 871–885, (2019). doi: 10.1016/j.ijheatmasstransfer.2018.12.064. [CrossRef] [Google Scholar]
- Y. Effendi, A. Prayogo, M. Djaeni, and E. Yohana, “Effect of perforated concave delta winglet vortex generators on heat transfer and flow resistance through the heated tubes in the channel,” Exp. Heat Transf., vol. 00, no. 00, pp. 1–24, (2021). doi: 10.1080/08916152.2021.1919245. [Google Scholar]
- H. Khodabakhshian, M. Nili-ahmadabadi, Y. Seong, and K. Chun, “International Journal of Mechanical Sciences Effect of nature-inspired needle-shaped vortex generators on the aerodynamic features of a double-delta wing,” Int. J. Mech. Sci., vol. 202–203, no. February, p. 106502, (2021). doi: 10.1016/j.ijmecsci.2021.106502. [Google Scholar]
- S. D. Patil, V. T. Mujmule, A. P. Mahale, S. A. Jagtap, and G. S. Patil, “Effects of Vortex Generators on Aerodynamic Drag Force in the Hatchback Type Car,” (2022) [Google Scholar]
- Y. Xie, Y. Rao, Y. Cheng, and W. Tian, “Investigation into the laminar separation control of airfoils at low Reynolds numbers by dimple vortex generators,” Aerosp. Sci. Technol., vol. 129, Oct. (2022). doi: 10.1016/j.ast.2022.107841. [Google Scholar]
- Y. Cao, Z. Wu, Y. Su, and Z. Xu, “Progress in Aerospace Sciences Aircraft fl ight characteristics in icing conditions,” Prog. Aerosp. Sci., vol. 74, pp. 62–80, (2015). doi: 10.1016/j.paerosci.2014.12.001. [CrossRef] [Google Scholar]
- S. D. S, “Energization of Boundary Layer Over Wing Surface By Vortex Generators,” Int. J. Innov. Sci. Res. Technol., vol. 2, no. 11, pp. 148–154, (2017). [Online]. Available: www.ijisrt.com148 [Google Scholar]
- O. M. Fouatih, B. Imine, and M. Medale, “Numerical/experimental investigations on reducing drag penalty of passive vortex generators on a NACA 4415 airfoil,” Wind Energy, vol. 22, no. 7, pp. 1003–1017, (2019). doi: 10.1002/we.2330. [CrossRef] [Google Scholar]
- H. Shan, L. Jiang, C. Liu, M. Love, and B. Maines, “Numerical study of passive and active flow separation control over a NACA0012 airfoil,” Comput. Fluids, vol. 37, no. 8, pp. 975–992, (2008). doi: 10.1016/j.compfluid.2007.10.010. [CrossRef] [Google Scholar]
- P. H. Chung, P. H. Chang, and S. I. Yeh, “The Aerodynamic Effect of an Alula-like Vortex Generator on a Revolving Wing,” Biomimetics, vol. 7, no. 3, Sep. (2022). doi: 10.3390/biomimetics7030128. [CrossRef] [PubMed] [Google Scholar]
- G. Widyawati, “Effect of Vortex Generators on Airfoil NACA 63 2 -415 to Aerodynamic Characteristics Using CFD,” Int. J. Electr. Energy Power Syst. Eng. (IJEEPSE, vol. 6, no. 1, pp. 133–137, (2023). [Google Scholar]
- G. Wijiatmoko, E. Yohana, P. A. Nugroho, and M. Tauviqirrahman, “CFD Analysis of Counter-Rotating Vane-Type Wing Vortex Generator for Regional Aircraft,” vol. 11, no. 11, pp. 1–16, (2024). [Google Scholar]
- “30 Years BBTA3 (Balai Besar Teknologi Aerodinamika, Aeroelastika, dan Aeroakustika), 1989 2019,” Tangerang Selatan, (2019). [Google Scholar]
- H. Xiao and P. Cinnella, “Progress in Aerospace Sciences Quantification of model uncertainty in RANS simulations : A review,” Prog. Aerosp. Sci., vol. 108, no. September 2018, pp. 1–31, (2019). doi: 10.1016/j.paerosci.2018.10.001. [CrossRef] [Google Scholar]
- D. Sen and A. Ghorai, “Carnot Engine : A New Look with Different Real Gas Equations,” Asian J. Appl. Sci., vol. 9, no. 2, pp. 143–148, (2021). [Google Scholar]
- L. L. F. Cavalcanti, D. O. Silva, L. A. Lerin, A. R. Monteiro, and M. De, “Determination of CO 2 solubility in Perna perna mussel and analysis of the suitability of the ideal and non-ideal gas models,” Chem. Thermodyn. Therm. Anal., vol. 7, no. July, p. 100075, (2022). doi: 10.1016/j.ctta.2022.100075. [CrossRef] [Google Scholar]
- H. Kallath et al., “Numerical Study of the Flow Uniformity Inside the High-Pressure Side Manifolds of a Cooled Cooling Air Heat Exchanger,” Appl. Therm. Eng., vol. 189, no. December 2020, p. 116645, (2021). doi: 10.1016/j.applthermaleng.2021.116645. [CrossRef] [Google Scholar]
- X. Yang and W. Li, “A novel theoretical approach to the temperature – viscosity relation for fluidic fuels,” FUEL, no. March, (2015). doi: 10.1016/j.fuel.2015.02.115. [Google Scholar]
- N. Namura, K. Shimoyama, S. Obayashi, Y. Ito, S. Koike, and K. Nakakita, “Multipoint design optimization of vortex generators on transonic swept wings,” J. Aircr., vol. 56, no. 4, pp. 1291–1302, (2019). doi: 10.2514/1.C035148. [CrossRef] [Google Scholar]
- X. K. Li, W. Liu, T. J. Zhang, P. M. Wang, and X. D. Wang, “Experimental and numerical analysis of the effect of vortex generator installation angle on flow separation control,” Energies, vol. 12, no. 23, (2019). doi: 10.3390/en12234583. [Google Scholar]
- H. Hares, G. Mebarki, M. Brioua, and M. Naoun, “Aerodynamic performances improvement of NACA 4415 profile by passive flow control using vortex generators,” [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.