Open Access
Issue
E3S Web Conf.
Volume 576, 2024
The 13th Engineering International Conference “Sustainable Development Through Green Engineering and Technology” (EIC 2024)
Article Number 02005
Number of page(s) 11
Section Green Technology in Environmental Conservation
DOI https://doi.org/10.1051/e3sconf/202457602005
Published online 03 October 2024
  1. CERC, Shore Protection Manual, (CERC, USACE, Washington, 1984) [Google Scholar]
  2. Sujantoko, W.A. Pratikto, R. W. Prastianto, M. I. Maulana, and A. Vebriyanti, Study of changes in coastal morphology due to utilization of the Surabaya city coastal area. Inter. J. Mar. Eng. Inn. & Res., 7(1), 26–32 (2021) [Google Scholar]
  3. Sujantoko, P. A. Pangestu, D. Saputro, B. P. P. Ekianto, Hasanudin, N. Kurniati, R. Kusumawardhani, and D. Hartanto, Hydrodynamic model simulation at the port of Tanjung Rhu Belitung. J. Mar. Eng. Inn. & Res., 8(2), pp.141–149 (2023) [Google Scholar]
  4. Sujantoko, M. Mustain, Wahyudi, and H. Ikhwani, Hydrodynamic model due to reclamation in Lamong Bay. IOP Conf. Ser.: Earth & Env. Sci., 1198, 012004 (2023). [CrossRef] [Google Scholar]
  5. M. Mustain, and Sujantoko, Spiral analysis of vertical currents in Lamong Bay. IOP Conf. Ser.: Earth & Env. Sci., 1166, 012024 (2023) [CrossRef] [Google Scholar]
  6. M. Mustain, and Sujantoko, Simple analysis of determination of tidal types of sea water: a case study in Lamong Bay waters, East Java, IEEE Oc. Eng. Tech. and Innov.. Conf.: Oc. Obs. Tech. and Innov. in Support of Ocean Decade of Sci., Jakarta, Indonesia, 13–17 (2021) [CrossRef] [Google Scholar]
  7. Sujantoko, M. Mustain, and B. P. P. Ekianto, Sedimentation analysis in the shipping lanes of Tanjung Rhu Port, Belitung, IOP Conf. Series: Earth & Env. Sci., (2024) [Google Scholar]
  8. Sujantoko, M. Mustain, and G. M. A. Narendra, Numerical model of changes in current patterns due to reclamation around the Mireng River Estuary, Gresik, IOP Conf. Series: Earth & Env. Sci., (2024) [Google Scholar]
  9. M. Mustain, Sujantoko, and M. A. Prasetyo, Empowerment and optimalization of Kenjeran beach tourism potential, Surabaya-East Java. Inter. Rev. Civ. Eng., 13(4), 246254 (2022) [Google Scholar]
  10. M. Mustain, I. J. Garang, H. Ikhwani, and Sujantoko, Analysis and maximize the ecotourism potential of the Wonorejo mangrove in East Surabaya. Inter. J. Eng. Appl., 10(2), 158–166 (2022) [Google Scholar]
  11. H. D. Armono, B. H. Bromo, Sholihin, and Sujantoko, Numerical study of bamboo breakwater for wave reduction, Fluids, 7(1), 1–13 (2022) [Google Scholar]
  12. L. Z. Hales, Floating Breakwater: State of the art Literature Review. Technical Report No. 81-1. (USACE, Fort Belvoir, 1981) [Google Scholar]
  13. B. L. McCartney, Floating breakwater design. J. Waterw. Port Coatl. & Oc. Eng., 111(2), 304–318 (1985) [CrossRef] [Google Scholar]
  14. Sujantoko, W. Wardhana, E. B. Djatmiko, H. D. Armono, W. S. Putro, and R. H. Almuzaki, Study of wave characteristics of the floating breakwater for piling and tethered type. J. Tek. Hidraulik, 12(1), 39–51 (2021) [CrossRef] [Google Scholar]
  15. Sujantoko, E. B. Djatmiko, W. Wardhana, and A. Hidayatullah, Analysis of mooring tension on the saw-type floating breakwater with physical modeling, J. Tek. Sipil, 28(3), 289–300 (2021) [Google Scholar]
  16. Sujantoko, H. D. Armono, E. B. Djatmiko, and R. D. Putra, Stability analysis of concrete block anchor on steep-slope floating breakwater. Fluids, 7(8), 259 (2022) [CrossRef] [Google Scholar]
  17. Sujantoko, E. B. Djatmiko, W. Wardhana, and M. Mustain, Analysis of wave spectrum change of porous-saw floating breakwater. Inter. J. Eng. Appl., 11(5), 298–307 (2023). [Google Scholar]
  18. Sujantoko, E. B. Djatmiko, and W. Wardhana, Experimental investigation of the performance of porous-slope floating breakwater. Inter. J. Eng. Appl., 10(2), 149–157 (2022) [Google Scholar]
  19. Sujantoko, E. B. Djatmiko, and W. Wardhana, Experimental study on mooring tension of porous-slope floating breakwater. Inter. J. Eng. Appl., 10(5), 345–352 (2022) [Google Scholar]
  20. Sujantoko, E. B. Djatmiko, W. Wardhana, and I. G. Firmansyah, Numerical modeling of hydrodynamic performance on porous slope type floating breakwater. Nasemore, 70(2), 149–157 (2023) [Google Scholar]
  21. Sujantoko, E. B. Djatmiko, W. Wardhana, M. Mustain, and D. R. Ahidah, Numerical modeling of wave hydrodynamic performance with various layouts of single-slope floating breakwater arrays, Inter. J. Eng. Appl., 12(1), 44–53 (2024) [Google Scholar]
  22. Sujantoko, D. R. Ahidah, W. Wardhana, E. B. Djatmiko, and M. Mustain, Numerical modeling of wave reflection and transmission in I-shaped floating breakwater series, IOP Conf. Ser.: Earth & Env. Sci., 1321 012010 (2024) [CrossRef] [Google Scholar]
  23. K. W. Pilarczyyk, and R. B. Zeidler, Offshore breakwater and shore evolution control, A. Balkema Rotterdam, The Netherlands (1996) [Google Scholar]
  24. M. Elbisy, Estimation of regular wave run-up on slopes of perforated coastal structures constructed on sloping beaches, Oc. Eng., 109(3), 60–71 (2005) [Google Scholar]
  25. N. J. Shankar, and R. Jayaratne, Wave run-up and overtopping on smooth and rough slopes of coastal structures, Oc. Eng., 30(2), 221–238 (2003) [Google Scholar]
  26. I. Melito, and J. A. Melby, Wave run-up, transmission, and reflection for structures armored with CORE-LOC®, Coast. Eng., 45, 35–32 (2002) [Google Scholar]
  27. J. P. de Waal, and J. W. van der Meer, Wave run-up and overtopping on coastal structures. Coast. Eng. Proc., ASCE, 1(23), (1992) [Google Scholar]
  28. H. D. Armono, A. Winarto, Sujantoko, and I. K. Suastika, A laboratory study on wave transmission over hexagonal artificial reef, IOP Conf. Ser.: Earth & Env. Sci., 799 012011 (2021) [CrossRef] [Google Scholar]
  29. Sujantoko, I. F. Rasman, M. Mustain, W. A. Pratikto, and S. Frestiqauli, Effect of interparticle distance on smoothed particle hydrodynamics on wave transformation through submerged breakwater, IOP Conf. Ser.: Earth & Env. Sci., 1298 012001 (2024) [CrossRef] [Google Scholar]
  30. Sujantoko, G. A. Pramestika, M. Mustain, H. Ikhwani, and Y. S. Hadiwidodo, Simulation of a wave hydrodynamic numerical model on a single vertical porous breakwater, IOP Conf. Ser.: Earth & Env. Sci., 1298 012007 (2024) [CrossRef] [Google Scholar]
  31. Sujantoko, P. A. Pangestu, W. A. Pratikto, M. Mustain, Wahyudi, and H. Ikhwani, Experimental study of wave reflection on a-jack armor unit on seawall structure, J. Mar. Eng. Inn. & Res., 8(2), 232–238 (2023) [Google Scholar]
  32. Sujantoko, W. A. Pratikto, Wahyudi, H. Ikhwani, and D. Saputro, Experimental study of wave run-up and overtopping for concrete armor a-jack on seawall structure. Inter. J. Eng. Appl., 12(5) (2024) [Google Scholar]
  33. H. Ajiwibowo, 2-D physical Modeling to Measure the Effectiveness of perforated skirt breakwater for short-period Waves. ITB J. Eng. Sci., 43 B(1), 57–78 (2011) [CrossRef] [Google Scholar]
  34. K. Kinog, H. Tuah, A. Wurjanto, and K. Idris, Armour stability on submerged breakwater. J. Tek. Sipil, 12(1) (2010) [Google Scholar]
  35. M. Muttray, and B. Reedijk, Design of Concrete Armour Layers. Ocean and Coastal Management, October, 1–17, (2008) [Google Scholar]
  36. R. Y. Hudson, Laboratory investigation of rubble-mound breakwaters. Trans. ASCE, 126(4), 492–520 (1961) [Google Scholar]
  37. J. W. van der Meer, Stability of breakwater armour layers design formulae, Coast. Eng., 11(3), 219–239 (1987) [CrossRef] [Google Scholar]
  38. H. F. Burcharth, The design of breakwaters. Coast. Est., and Harb. Eng. (1993) [Google Scholar]
  39. S. H. Mousavi, M. R. Kavianpour, and O. A. Yamini, Experimental analysis of breakwater stability with antifer concrete block. Mar. Geores. Geotech., 35 (3), 426–434, (2017) [CrossRef] [Google Scholar]
  40. O. Setyandito, H. D. Armono, and N. Yuwono, Uji model fisik stabilitas unit lapis lindung pemecah gelombang pelabuhan Sanur. J. Ilmiah Desain & Konstruksi, 20(2), 139–149 (2021) [CrossRef] [Google Scholar]
  41. S. R. Wardhani, and B. Rochadi, and P. Purwanto, Studi model fisik stabilitas desain breakwater terhadap hempasan gelombang di Pantai Glagah Yogyakarta. J. Ocean., 2(1), 57–65 (2013) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.