Open Access
Issue |
E3S Web Conf.
Volume 576, 2024
The 13th Engineering International Conference “Sustainable Development Through Green Engineering and Technology” (EIC 2024)
|
|
---|---|---|
Article Number | 04005 | |
Number of page(s) | 9 | |
Section | Renewable and Sustainable Energy | |
DOI | https://doi.org/10.1051/e3sconf/202457604005 | |
Published online | 03 October 2024 |
- BPHN, Indonesia Merupakan Negara Kepulauan Yang Terbesar di Dunia. BPHN, (2015). https://bphn.go.id/berita-utama/indonesia-merupakan-negara-kepulauan-yang-terbesar-di-dunia-3441 (accessed Apr. 15, 2024) [Google Scholar]
- E. Breman, D. Ballesteros, E. Castillo-Lorenzo, C. Cockel, J. Dickie, A. Faruk, K. O’Donnell, C. A. Offord, S. Pironon, S. Sharrock, and T. Ulian, Plant diversity conservation challenges and prospects—the perspective of botanic gardens and the millennium seed bank. Plants. 10, 1–35 (2021). doi: 10.3390/plants10112371. [Google Scholar]
- BRIN, BRIN Ungkap Potensi SDG Lokal Indonesia dalam Mendukung Ketahanan Pangan Nasional. BRIN. (2023). https://www.brin.go.id/news/117040/brin-ungkap-potensi-sdg-lokal-indonesia-dalam-mendukung-ketahanan-pangan-nasional (accessed Apr. 15, 2024). [Google Scholar]
- J. Harris, M. van Zonneveld, E. G. Achigan-Dako, B. Bajwa, I. D. Brouwer, D. Choudhury, I. de Jager, B. de Steenhuijsen Piters, M. E. Dulloo, L. Guarino, and R. Kindt, Fruit and vegetable biodiversity for nutritionally diverse diets: Challenges, opportunities, and knowledge gaps. Glob. Food Sec. 33, 100618, 1–10 (2022). doi: 10.1016/j.gfs.2022.100618. [Google Scholar]
- S. P. Sha, D. Modak, S. Sarkar, S. K. Roy, S. P. Sah, K. Ghatani, and S. Bhattacharjee, Fruit waste: a current perspective for the sustainable production of pharmacological, nutraceutical, and bioactive resources. Front. Microbiol. 14, 1–20 (2023). doi: 10.3389/fmicb.2023.1260071. [Google Scholar]
- S. Suliestyah, R. Aryanto, C. Palit, R. Yulianti, B. C. Suudi, and A. Meitdwitri, Eco enzyme production from fruit peel waste and its application as an anti-bacterial and TSS reducing agent. Int. Res. J. Eng. IT Sci. Res. 8, 270–275 (2022). doi: 10.21744/irjeis.v8n6.2199. [Google Scholar]
- BPS, Produksi Tanaman Buah-buahan, 2021-2022. BPS. (2023). https://www.bps.go.id/id/statistics-table/2/NjIjMg==/produksi-tanaman-buah-buahan.html (accessed Apr. 15, 2024). [Google Scholar]
- V. Saraswaty, C. Risdian, I. Primadona, R. Andriyani, D. G. S. Andayani, and T. Mozef, Pineapple peel wastes as a potential source of antioxidant compounds. Iopscience.Iop.Org. 8, 68–74 (2018). doi: 10.1088/1755-1315. [Google Scholar]
- P. Khamsaw, S. R. Sommano, M. Wongkaew, W. G. Willats, C. R. Bakshani, S. Sirilun, and P. Sunanta, Banana Peel (Musa ABB cv. Nam Wa Mali-Ong) as a Source of ValueAdding Components and the Functional Properties of Its Bioactive Ingredients. Plants. 13, 1–18 (2024). doi: 10.3390/plants13050593. [CrossRef] [PubMed] [Google Scholar]
- I. Ignat, I. Volf, and V. I. Popa, A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 126, 1821–1835 (2011). doi: 10.1016/j.foodchem.2010.12.026. [CrossRef] [PubMed] [Google Scholar]
- M. F. Afzal, W. Khalid, S. Akram, M. A. Khalid, M. Zubair, S. Kauser, K. Abdelsamea Mohamedahmed, A. Aziz, and S. Anusha Siddiqui, Bioactive profile and functional food applications of banana in food sectors and health: a review. Int. J. Food Prop. 25, 2286–2300 (2022). doi: 10.1080/10942912.2022.2130940 [CrossRef] [Google Scholar]
- L. Serna-Cock, E. García-Gonzales, and C. Torres-León, Agro-industrial potential of the mango peel based on its nutritional and functional properties. Food Rev. Int. 32, 364–376 (2016). doi: 10.1080/87559129.2015.1094815. [CrossRef] [Google Scholar]
- I. Gu, O. Balogun, C. Brownmiller, H. W. Kang, and S. O. Lee, Bioavailability of Citrulline in Watermelon Flesh, Rind, and Skin Using a Human Intestinal Epithelial Caco-2 Cell Model. Appl. Sci. 13, 1–10 (2023). doi: 10.3390/app13084882. [Google Scholar]
- J. Chen, C. Liao, X. Ouyang, I. Kahramanoǧlu, Y. Gan, and M. Li, Antimicrobial Activity of Pomegranate Peel and Its Applications on Food Preservation. J. Food Qual. 2020, 1–8 (2020). doi: 10.1155/2020/8850339. [Google Scholar]
- A. Fissore, M. Marengo, V. Santoro, G. Grillo, S. Oliaro-Bosso, G. Cravotto, F. Dal Piaz, and S. Adinolfi, Extraction and Characterization of Bromelain from Pineapple Core: A Strategy for Pineapple Waste Valorization, Processes. 11, 1–10 (2023). doi: 10.3390/pr11072064. [Google Scholar]
- M. Mohd Ali, N. Hashim, S. Abd Aziz, and O. Lasekan, Pineapple (Ananas comosus): A comprehensive review of nutritional values, volatile compounds, health benefits, and potential food products. Food Res. Int. 137, 109675 (2020). doi: 10.1016/j.foodres.2020.109675. [CrossRef] [Google Scholar]
- W. M. Hikal, A. A. Mahmoud, H. A. Said-Al Ahl, A. Bratovcic, K. G. Tkachenko, M. Kačániová, and R. M. Rodriguez, Pineapple (Ananas comosus& L. Merr.), Waste Streams, Characterisation and Valorisation: An Overview. Open J. Ecol. 11, 610–634 (2021). doi: 10.4236/oje.2021.119039. [CrossRef] [Google Scholar]
- W. M. Hikal, S. A. Ahl, A. H. Hussein, A. Bratovcic, K. G. Tkachenko, J. Sharifi-Rad, M. Kačániová, M. Elhourri, and M. Atanassova, Banana Peels: A Waste Treasure for Human Being. Evidence-based Complement. Altern. Med. 2022, 1–9 (2022). doi: 10.1155/2022/7616452. [CrossRef] [Google Scholar]
- FAO, Crops and livestock products. FAOSTAT, 2023. https://www.fao.org/faostat/en/#data/QCL (accessed Apr. 15, 2024). [Google Scholar]
- L. A. de Castro, J. M. Lizi, E. G. L. das Chagas, R. A. de Carvalho, and F. M. Vanin, From orange juice by-product in the food industry to a functional ingredient: Application in the circular economy. Foods. 9, 1–17 (2020). doi: 10.3390/foods9050593. [Google Scholar]
- D. B. Pinandoyo and A. Masnar, Changes in chemical constituents and overall acceptability of papaya jam fortified with soya protein during storage. E-Journal Menara Perkeb. 88, 35–43 (2020). doi: 10.22302/iribb.jur.mp.v88i1.361. [CrossRef] [Google Scholar]
- P. D. Pathak, S. A. Mandavgane, and B. D. Kulkarni, Waste to Wealth: A Case Study of Papaya Peel. Waste and Biomass Valorization. 10, 1755–1766 (2019). doi: 10.1007/s12649-017-0181-x. [CrossRef] [Google Scholar]
- M. Insanu, N. M. D. M. W. Nayaka, L. Solihin, K. R. Wirasutisna, H. Pramastya, and I. Fidrianny, Antioxidant activities and phytochemicals of polar, semi-polar, and nonpolar extracts of used and unused parts of Carica papaya fruit. Biocatal. Agric. Biotechnol. 39, 102270 (2021). doi: 10.1016/j.bcab.2021.102270. [Google Scholar]
- Veersain, A. Kumar, M. Kumar, P. Thilagam, R. Yadav, S. Rajpoot, S. Yadav, and S. Kumar, A comprehensive review of papaya multidimensional impact on health and wellness. Int. J. Stat. Appl. Math. 8, 1065–1071 (2023). doi: 10.22271/maths.2023.v8.i5so.1327. [CrossRef] [Google Scholar]
- S. Garcia and D. Gonçalves, Use of enzymes in cosmetics: proposed enzymatic peel procedure. Cos Act. J. 1, 27–33 (2021) [Google Scholar]
- M. E. Alañón, S. Pimentel-Moral, D. Arráez-Román, and A. Segura-Carretero, Profiling phenolic compounds in underutilized mango peel by-products from cultivars grown in Spanish subtropical climate over maturation course. Food Res. Int. 140, 1–23 (2021). doi: 10.1016/j.foodres.2020.109852. [Google Scholar]
- P. M. Haldankar, M. M. Burondkar, A. K. Singh, and Y. S. Saitwal, Coastal Agricultural Systems Sustainable Mango Production Technology for Climatic Aberration in Coastal Agroclimate of Maharashtra. Adv. Agric. Res. Technol. J. n. 4, 73–87 (2020) [Google Scholar]
- S. Haque, D. Akbar, and S. Kinnear, The variable impacts of extreme weather events on fruit production in subtropical Australia. Sci. Hortic. (Amsterdam). 262, 1–10 (2020). doi: 10.1016/j.scienta.2019.109050. [CrossRef] [Google Scholar]
- A. López-Cobo, V. Verardo, E. Diaz-de-Cerio, A. Segura-Carretero, A. FernándezGutiérrez, and A. M. Gómez-Caravaca, Use of HPLCand GC-QTOF to determine hydrophilic and lipophilic phenols in mango fruit (Mangifera indica L.) and its byproducts. Food Res. Int. 100, 423–434 (2017). doi: 10.1016/j.foodres.2017.02.008. [CrossRef] [Google Scholar]
- M. E. Alañón, I. Palomo, L. Rodríguez, E. Fuentes, D. Arráez-Román, and A. SeguraCarretero, Antiplatelet activity of natural bioactive extracts from mango (Mangifera indica l.) and its by-products. Antioxidants. 8, 1–11 (2019). doi: 10.3390/antiox8110517. [Google Scholar]
- R. Oliver-Simancas, R. Muñoz, M. C. Díaz-Maroto, M. S. Pérez-Coello, and M. E. Alañón, Mango by-products as a natural source of valuable odor-active compounds. J. Sci. Food Agric. 100, 4688–4695 (2020). doi: 10.1002/jsfa.10524. [CrossRef] [PubMed] [Google Scholar]
- A. Wall‐Medrano, F. J. Olivas‐Aguirre, J. F. Ayala‐Zavala, J. A. Domínguez‐Avila, G. A. Gonzalez‐Aguilar, L. A. Herrera‐Cazares, and M. Gaytan‐Martinez, Health Benefits of Mango By-products. Food Wastes By-products Nutraceutical Heal. Potential. 159–191 (2019). doi: 10.1002/9781119534167.ch6. [Google Scholar]
- Y. Wang, J. Hu, Z. Dai, J. Li, and J. Huang, In vitro assessment of physiological changes of watermelon (Citrullus lanatus) upon iron oxide nanoparticles exposure. Plant Physiol. Biochem. 108, 353–360 (2016). doi: 10.1016/j.plaphy.2016.08.003. [CrossRef] [Google Scholar]
- B. Tabiri, Watermelon Seeds as Food: Nutrient Composition, Phytochemicals and Antioxidant Activity. Int. J. Nutr. Food Sci. 5, 139 (2016). doi: 10.11648/j.ijnfs.20160502.18. [CrossRef] [Google Scholar]
- J. Dube, G. Ddamulira, and M. Maphosa, Watermelon production in Africa: challenges and opportunities. Int. J. Veg. Sci. 27, 211–219 (2021). doi: 10.1080/19315260.2020.1716128. [CrossRef] [Google Scholar]
- R. A. Shanely, D. C. Nieman, P. Perkins-Veazie, D. A. Henson, M. P. Meaney, A. M. Knab, and L. Cialdell-Kam, Comparison of watermelon and carbohydrate beverage on exercise-induced alterations in systemic inflammation, immune dysfunction, and plasma antioxidant capacity. Nutrients. 8, 1–14 (2016). doi: 10.3390/nu8080518. [Google Scholar]
- I. Kahramanoglu, Trends in pomegranate sector: production, postharvest handling and marketing. Int. J. Agric. For. Life Sci. 3, 1–7 (2019) [Google Scholar]
- Y. Mo, J. Ma, W. Gao, L. Zhang, J. Li, J. Li, and J. Zang, Pomegranate Peel as a Source of Bioactive Compounds: A Mini Review on Their Physiological Functions. Front. Nutr. 9, 1–9 (2022). doi: 10.3389/fnut.2022.887113. [CrossRef] [Google Scholar]
- M. Cano-Lamadrid, L. Martínez-Zamora, N. Castillejo, and F. Artés-Hernández, From Pomegranate Byproducts Waste to Worth: A Review of Extraction Techniques and Potential Applications for Their Revalorization. Foods. 11, 1–33 (2022). doi: 10.3390/foods11172596. [Google Scholar]
- R. Mohan, V. Sivakumar, T. Rangasamy, and C. Muralidharan, Optimisation of bromelain enzyme extraction from pineapple (Ananas comosus) and application in process industry. Am. J. Biochem. Biotechnol. 12, 188–195 (2016). doi: 10.3844/ajbbsp.2016.188.195. [CrossRef] [Google Scholar]
- P. Thiviya, A. Gamage, R. Kapilan, O. Merah, and T. Madhujith, Production of SingleCell Protein from Fruit Peel Wastes Using Palmyrah Toddy Yeast. Fermentation. 8, 1–16 (2022). doi: 10.3390/fermentation8080355. [Google Scholar]
- M. El-bendary, Economic production of polyethylene modifying lipase enzyme under solid state fermentation using banana peels and sand. BioTechnology: An Indian Journal. 3, 1–8 (2015) [Google Scholar]
- S. K. Panda, R. C. Ray, S. S. Mishra, and E. Kayitesi, Microbial processing of fruit and vegetable wastes into potential biocommodities: a review. Crit. Rev. Biotechnol. 38, 1–16 (2018). doi: 10.1080/07388551.2017.1311295. [CrossRef] [PubMed] [Google Scholar]
- C. Varilla, M. Marcone, L. Paiva, and J. Baptista, Bromelain, a group of pineapple proteolytic complex enzymes (Ananas comosus) and their possible therapeutic and clinical effects. a summary. Foods. 10, 1–14 (2021). doi: 10.3390/foods10102249. [Google Scholar]
- H. Rahmi, A. Widayanti, and A. Hanif, Utilization of Bromelain Enzyme from Pineapple Peel Waste on Mouthwash Formula Against Streptococcus mutans. IOP Conf. Ser. Earth Environ. Sci. 217, 1–4 (2019). doi: 10.1088/1755-1315/217/1/012036. [CrossRef] [Google Scholar]
- C. W. Huang, I. J. Lin, Y. M. Liu, and J. L. Mau, Composition, enzyme and antioxidant activities of pineapple. Int. J. Food Prop. 24, 1244–1251 (2021). doi: 10.1080/10942912.2021.1958840. [CrossRef] [Google Scholar]
- J. C. Warella, Organoleptic Test of Eco-enzyme : Fermentation of Banana Peel Waste. Bioma J. Ilm. Biol. 12, 44–53 (2023). doi: 10.26877/bioma.v12i1.14803. [Google Scholar]
- C. Vidalia, E. Angelina, J. Hans, L. H. Field, N. C. Santo, and E. Rukmini, Eco-enzyme as disinfectant: a systematic literature review. Int. J. Public Heal. Sci. 12, 1171–1180 (2023). doi: 10.11591/ijphs.v12i3.22131. [Google Scholar]
- R. Lekshmi, S. Arif Nisha, B. Kaleeswaran, and A. H. Alfarhan, Pomegranate peel is a low-cost substrate for the production of tannase by Bacillus velezensis TA3 under solid state fermentation. J. King Saud Univ. Sci. 32, 1831–1837 (2020). doi: 10.1016/j.jksus.2020.01.022. [CrossRef] [Google Scholar]
- B. Varshini and V. Gayathri, Role of Eco-Enzymes in Sustainable Development. Nat. Environ. Pollut. Technol. 22, 1299–1310 (2023). doi: 10.46488/NEPT.2023.v22i03.017. [CrossRef] [Google Scholar]
- C. Arun and P. Sivashanmugam, Study on optimization of process parameters for enhancing the multi-hydrolytic enzyme activity in garbage enzyme produced from preconsumer organic waste. Bioresour. Technol. 226, 200–210 (2017). doi: 10.1016/j.biortech.2016.12.029. [CrossRef] [Google Scholar]
- Damayanti, A., Triwibowo, B., Megawati, M., Ekanuramanta, A. T., Harianingsih, H., Thomas, K., Huda, N., & Nuryoto, N., Optimization of The Aqueous Enzymatic Extraction (AEE) of Rice Bran Oil With Cellulase Using Response Surface Methodology. Jurnal Bahan Alam Terbarukan. 12, 87–96 (2023) [CrossRef] [Google Scholar]
- D. S. Retnowati, A. C. Kumoro, and K. Haryani, Anaerobic Fermentation of Mixed Fruits Peel Waste for Functional Enzymes Production Employing Palm Sugar and Molasses as The Carbon Sources. 23, 71–76 (2023) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.