Open Access
Issue
E3S Web Conf.
Volume 576, 2024
The 13th Engineering International Conference “Sustainable Development Through Green Engineering and Technology” (EIC 2024)
Article Number 06003
Number of page(s) 7
Section Sustainable Materials and Green Chemistry
DOI https://doi.org/10.1051/e3sconf/202457606003
Published online 03 October 2024
  1. K. J. Gaston, K. Anderson, J. D. Shutler, R. J. Brewin, X. Yan, Environmental impacts of increasing numbers of artificial space objects. Front. in Eco. and the Env. 21, 289–296 (2023). https://doi.org/10.1002/fee.2624 [CrossRef] [Google Scholar]
  2. A. Sharma et al., Onboard compression and preprocessing methods for leo satellite imagery: a review, in Prooceding in AI for Biomedical Instrumentation, Electronics and Computing, CRC Press, 2024 [Google Scholar]
  3. L. Miraux, Environmental limits to the space sector’s growth. Sci. of The Tot. Envi. 806, 150862 (2022). https://doi.org/10.1016/j.scitotenv.2021.150862 [CrossRef] [Google Scholar]
  4. W. Yuan, Y. Wang, Z. Luo, F. Chen, H. Li, T. Zhao, Improved performances of sibcn powders modified phenolic resins-carbon fiber composites. Processes. 9, 6 (2021). https://doi.org/10.3390/pr9060955 [CrossRef] [Google Scholar]
  5. R. K. Chinnaraj, Y. C. Kim, S. M. Choi, Arc-jet tests of carbon–phenolic-based ablative materials for spacecraft heat shield applications. Materials. 16, 10 (2023). https://doi.org/10.3390/ma16103717 [Google Scholar]
  6. S. Ahmad, S. Ali, M. Salman, A. H. Baluch, A comparative study on the effect of carbonbased and ceramic additives on the properties of fiber reinforced polymer matrix composites for high temperature applications. Cer. Int. 47, 33956–33971 (2021). https://doi.org/10.1016/j.ceramint.2021.08.356 [CrossRef] [Google Scholar]
  7. A. A. Adem, H. Panjiar, B. S. S. Daniel, The effect of nanocarbon inclusion on mechanical, tribological, and thermal properties of phenolic resin-based composites: an overview. Eng. Rep. 6, 4 (2024). https://doi.org/10.1002/eng2.12861 [Google Scholar]
  8. L. Paglia et al., Manufacturing, thermochemical characterization and ablative performance evaluation of carbon-phenolic ablative material with nano-Al2O3 addition. Poly. Deg. and Stab. 169, 108979 (2019). https://doi.org/10.1016/j.polymdegradstab.2019.108979 [CrossRef] [Google Scholar]
  9. R. Harris, Q. Leland, J. Du, L. Chow, Characterization of paraffin-graphite foam and paraffin-aluminum foam thermal energy storage systems, in Proceeding 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, California: American Institute of Aeronautics and Astronautics, San Francisco, Juny (2006) [Google Scholar]
  10. S. D. Pierre des Ammbrois et al., Adhesive joining of zerodur–cfrp–zerodur sandwich structures for aerospace applications. Macromol. Mater. Eng. 305, 2000464 (2020). https://doi.org/10.1002/mame.202000464 [CrossRef] [Google Scholar]
  11. V. Casalegno, M. Salvo, S. Rizzo, L. Goglio, O. Damiano, M. Ferraris, Joining of carbon fibre reinforced polymer to al-si alloy for space applications. Int. Jour. of Adh. and Adhes. 82, 146–152 (2018). https://doi.org/10.1016/j.ijadhadh.2018.01.009 [CrossRef] [Google Scholar]
  12. M. Ibadi, H. Purnomo, D. N. Vicarneltor, H. B. Wibowo, M. H. Setianto, Y. Whulanza, Investigation of thermomechanical analysis of carbon/epoxy composite for spacecraft structure material. JSM. 53, 691–704 (2024). https://doi.org/10.17576/jsm-2024-5303-16 [CrossRef] [Google Scholar]
  13. ASTM E1131 – 08, Standard test method for compositional analysis by thermogravimetry. American Society for Testing Materials, 2010 [Google Scholar]
  14. L. G. M. de Souza, E. J. da Silva, L. G. V. M. de Souza, Obtaining and characterizing a polyester resin and cement powder composites, Mat. Res. 23, 5 (2020). https://doi.org/10.1590/1980-5373-mr-2018-0894 [Google Scholar]
  15. N. A. Raof, R. Yunus, U. Rashid, N. Azis, Z. Yaakub, Effect of molecular structure on oxidative degradation of ester based transformer oil. Tri. Int. 140, 105852 (2019). https://doi.org/10.1016/j.triboint.2019.105852 [Google Scholar]
  16. D. Bücheler, A. Kaiser, F. Henning, Using thermogravimetric analysis to determine carbon fiber weight percentage of fiber-reinforced plastics. Comp. Part B: Eng. 106, 218–223 (2016). https://doi.org/10.1016/j.compositesb.2016.09.028 [CrossRef] [Google Scholar]
  17. C. N. Zárate, M. I. Aranguren, M. M. Reboredo, Thermal degradation of a phenolic resin, vegetable fibers, and derived composites. J. Appl. Polym. Sci. 107, 2977–2985 (2008). https://doi.org/10.1002/app.27455 [CrossRef] [Google Scholar]
  18. E. M. Chistyakov, I. V. Terekhov, A. V. Shapagin, S. N. Filatov, V. P. Chuev, Curing of epoxy resin der-331 by hexakis (4-acetamidophenoxy) cyclotriphosphazene and properties of the prepared composition. Polymers. 11, 7 (2019). https://doi.org/10.3390/polym11071191 [CrossRef] [PubMed] [Google Scholar]
  19. G. Barra, L. Guadagno, M. Raimondo, M. G. Santonicola, E. Toto, S. Vecchio Ciprioti, A comprehensive review on the thermal stability assessment of polymers and composites for aeronautics and space applications. Polymers. 15, 18 (2023). https://doi.org/10.3390/polym15183786 [CrossRef] [PubMed] [Google Scholar]
  20. A. Shaheryar, S. Khan, H. Qaiser, A. A. Khurram, T. Subhani, Mechanical and thermal properties of hybrid carbon fibre–phenolic matrix composites containing graphene nanoplatelets and graphite powder. Plas. Rub. and Comp. 46, 431–441 (2017). https://doi.org/10.1080/14658011.2017.1385177 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.