Open Access
Issue
E3S Web Conf.
Volume 576, 2024
The 13th Engineering International Conference “Sustainable Development Through Green Engineering and Technology” (EIC 2024)
Article Number 06014
Number of page(s) 9
Section Sustainable Materials and Green Chemistry
DOI https://doi.org/10.1051/e3sconf/202457606014
Published online 03 October 2024
  1. A. K. Agarwal, T. Gupta, P. C. Shukla, and A. Dhar, Particulate emissions from biodiesel fuelled CI engines. Energy Convers Manag. 94, 311–330 (2015). doi: 10.1016/j.enconman.2014.12.094. [CrossRef] [Google Scholar]
  2. R. Kukana and O. P. Jakhar, Synthesis of biodiesel from prosopis juliflora and using MCDM analytical hierarchy process technique for evaluating with different biodiesel. Cogent Eng. 8, (2021). doi: 10.1080/23311916.2021.1957291. [CrossRef] [Google Scholar]
  3. A. Jahanbakhshi, S. Karami-Boozhani, M. Yousefi, and J. B. Ooi, Performance of bioethanol and diesel fuel by thermodynamic simulation of the miller cycle in the diesel engine. Results in Engineering. 12, 100279 (2021). doi: 10.1016/j.rineng.2021.100279. [CrossRef] [Google Scholar]
  4. C. Safi, B. Zebib, O. Merah, P.-Y. Pontalier, and C. Vaca-Garcia, Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews. 35, 265–278 (2014). doi: 10.1016/j.rser.2014.04.007. [CrossRef] [Google Scholar]
  5. M. Aslan and H. Isik, Green energy for the battlefield. Int J Green Energy. 14, 1020–1026 (2017). doi: 10.1080/15435075.2017.1354299. [CrossRef] [Google Scholar]
  6. Q. Doan Thuc, K. D. Duong, Q. Doan Huong, N. H. Viet Anh, T. Q. Ngo, and T. X. Bui, The role of ecological consequences of green energy in developed and developing economies. Economic Research-Ekonomska Istraživanja. 36, 906–929 (2023). doi: 10.1080/1331677X.2022.2080744. [CrossRef] [Google Scholar]
  7. S. Mumuni and T. Mwimba, Modeling the impact of green energy consumption and natural resources rents on economic growth in Africa: An analysis of dynamic panel ARDL and the feasible generalized least squares estimators. Cogent Economics & Finance. 11 (2023). doi: 10.1080/23322039.2022.2161774. [Google Scholar]
  8. X. Zhang, F. Liu, H. Wang, and R. Nazir, Influence of ecological innovation and green energy investment on unemployment in China: evidence from advanced quantile approach. Economic Research-Ekonomska Istraživanja. 36 (2023). doi: 10.1080/1331677X.2022.2125034. [Google Scholar]
  9. M. Vohra, J. Manwar, R. Manmode, S. Padgilwar, and S. Patil, Bioethanol production: Feedstock and current technologies. J Environ Chem Eng. 2, 573–584 (2014). doi: 10.1016/j.jece.2013.10.013. [CrossRef] [Google Scholar]
  10. W. M. Budzianowski, High-value low-volume bioproducts coupled to bioenergies with potential to enhance business development of sustainable biorefineries. Renewable and Sustainable Energy Reviews. 70, 793–804 (2017). doi: 10.1016/j.rser.2016.11.260. [CrossRef] [Google Scholar]
  11. M. Augusta, D. C. Silvello, G. A. Gasparotto, and R. Goldbeck, Enzymatic hydrolysis of carbohydrate-rich Chlorella vulgaris for third-generation bioethanol production by cellulase-recombinant yeast. Cleaner Chemical Engineering. 6, 100111 (2023). doi: 10.1016/j.clce.2023.100111. [CrossRef] [Google Scholar]
  12. X.-L. Sun, Y. Wang, H.-Q. Xiong, S.-T. Wang, Y.-C. Fang, and H. Xiang, Removal of environmental estrogens from wastewater by microalgae under the influence of bacteria. J Clean Prod. 414, 137635 (2023). doi: 10.1016/j.jclepro.2023.137635. [CrossRef] [Google Scholar]
  13. L. Wang, H. Xiao, N. He, D. Sun, and S. Duan, Biosorption and Biodegradation of the Environmental Hormone Nonylphenol By Four Marine Microalgae. Sci Rep. 9, 5277 (2019). doi: 10.1038/s41598-019-41808-8. [CrossRef] [PubMed] [Google Scholar]
  14. J. Fan, S. Feng, Q. Tang, S. Guo, and Z. Cai, Using steel slag as Ca2+ supplement to trigger microalgae growth and wastewater treatment. Biochem Eng J. 197, 108982 (2023). doi: 10.1016/j.bej.2023.108982. [CrossRef] [Google Scholar]
  15. Megawati, Z. A. S. Bahlawan, A. Damayanti, R. D. A. Putri, B. Triwibowo, H. Prasetiawan, S. P. K. Aji, and A. Prawisnu, Bioethanol production from glucose obtained from enzymatic hydrolysis of Chlorella microalgae. Mater Today Proc. 63, S373–S378 (2022). doi: 10.1016/j.matpr.2022.03.551. [CrossRef] [Google Scholar]
  16. S. Paterson, P. Gómez-Cortés, M. A. de la Fuente, and B. Hernández-Ledesma, Bioactivity and Digestibility of Microalgae Tetraselmis sp. and Nannochloropsis sp. as Basis of Their Potential as Novel Functional Foods. Nutrients. 15, 477 (2023). doi: 10.3390/nu15020477. [CrossRef] [PubMed] [Google Scholar]
  17. R. Kholssi, H. Lougraimzi, and I. Moreno-Garrido, Influence of salinity and temperature on the growth, productivity, photosynthetic activity and intracellular ROS of two marine microalgae and cyanobacteria. Mar Environ Res. 186, 105932 (2023). doi: 10.1016/j.marenvres.2023.105932. [CrossRef] [PubMed] [Google Scholar]
  18. R. Kholssi, H. Lougraimzi, and I. Moreno-Garrido, Effects of global environmental change on microalgal photosynthesis, growth and their distribution. Mar Environ Res. 184, 105877 (2023). doi: 10.1016/j.marenvres.2023.105877. [CrossRef] [PubMed] [Google Scholar]
  19. L. Soto-Sierra, L. R. Wilken, S. Mallawarachchi, and Z. L. Nikolov, Process development of enzymatically-generated algal protein hydrolysates for specialty food applications. Algal Res. 55, 102248 (2021). doi: 10.1016/j.algal.2021.102248. [CrossRef] [Google Scholar]
  20. D. Hernández, B. Riaño, M. Coca, and M. C. García-González, Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pretreatments as a previous step for bioethanol production. Chemical Engineering Journal. 262 939–945 (2015). doi: 10.1016/j.cej.2014.10.049. [CrossRef] [Google Scholar]
  21. S. Zheng, A. Wu, H. Wang, L. Chen, J. Song, H. Zhang, M. He, C. Wang, H. Chen, and Q. Wang, Purification efficiency of Pyropia-processing wastewater and microalgal biomass production by the combination of Chlorella sp. C2 cultivated at different culture temperatures and chitosan. Bioresour Technol. 373 128730 (2023). doi: 10.1016/j.biortech.2023.128730. [CrossRef] [PubMed] [Google Scholar]
  22. G. Dragone, Challenges and opportunities to increase economic feasibility and sustainability of mixotrophic cultivation of green microalgae of the genus Chlorella. Renewable and Sustainable Energy Reviews. 160, 112284 (2022). doi: 10.1016/j.rser.2022.112284. [CrossRef] [Google Scholar]
  23. K. Rani, N. Sandal, and P. K. Sahoo, A comprehensive review on chlorella-its composition, health benefits, market and regulatory scenario. The Pharma Innovation Journal. 7, 584–589 (2018). www.thepharmajournal.com [Google Scholar]
  24. S.-H. Ho, S.-W. Huang, C.-Y. Chen, T. Hasunuma, A. Kondo, and J.-S. Chang, Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol. 135, 191–198 (2013). doi: 10.1016/j.biortech.2012.10.015. [CrossRef] [PubMed] [Google Scholar]
  25. B. E. Condor, M. D. G. de Luna, Y. H. Chang, J. H. Chen, Y. K. Leong, P. T. Chen, C. Y. Chen, D. J. Lee, and J. S. Chang, Bioethanol production from microalgae biomass at high-solids loadings. Bioresour Technol. 363, (2022). doi: 10.1016/j.biortech.2022.128002. [CrossRef] [PubMed] [Google Scholar]
  26. H. Shokrkar, S. Ebrahimi, and M. Zamani, Bioethanol production from acidic and enzymatic hydrolysates of mixed microalgae culture. Fuel. 200, 380–386 (2017). doi: 10.1016/j.fuel.2017.03.090. [CrossRef] [Google Scholar]
  27. P. S. Fhariza, A. Azhari, Z. Ginting, L. Hakim, and M. Meriatna, Kinetika Hidrolisa Kulit Pisang Awak (Musa paradisiaca var. awak) Menjadi Glukosa Menggunakan Katalis Asam Sulfat. Chemical Engineering Journal Storage (CEJS). 3, 107 (2023). doi: 10.29103/cejs.v3i1.9535. [CrossRef] [Google Scholar]
  28. Y. Mu, G. Wang, and H.-Q. Yu, Kinetic modeling of batch hydrogen production process by mixed anaerobic cultures. Bioresour Technol. 97, 1302–1307 (2006). doi: 10.1016/j.biortech.2005.05.014. [CrossRef] [PubMed] [Google Scholar]
  29. D. L. Moorhead and M. N. Weintraub, The evolution and application of the reverse Michaelis-Menten equation. Soil Biol Biochem. 125, 261–262 (2018). doi: 10.1016/j.soilbio.2018.07.021. [CrossRef] [Google Scholar]
  30. G.-T. Jeong, S.-K. Kim, and B.-R. Oh, Production of fermentable sugars from Chlorella sp. by solid-acid catalyst. Algal Res. 51, 102044 (2020). doi: 10.1016/j.algal.2020.102044. [CrossRef] [Google Scholar]
  31. P. Väljamäe, K. Kipper, G. Pettersson, and G. Johansson, Synergistic cellulose hydrolysis can be described in terms of fractal-like kinetics. Biotechnol Bioeng. 84, 254–257 (2003). doi: 10.1002/bit.10775. [CrossRef] [PubMed] [Google Scholar]
  32. Q. Gan, S. J. Allen, and G. Taylor, Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: An overview, an experimental study and mathematical modelling. Process Biochemistry. 38, 1003–1018 (2003). doi: 10.1016/S0032-9592(02)00220-0. [CrossRef] [Google Scholar]
  33. W. Nuriana and Wuryantoro, Ethanol Synthesis from Jackfruit (Artocarpus Heterophyllus Lam) Stone Waste as Renewable Energy Source. Energy Procedia. 65, 372–377 (2015). doi: 10.1016/j.egypro.2015.01.066. [CrossRef] [Google Scholar]
  34. S. Wang, M. Lv, J. Yang, Y. Zhou, and B. Xu, Effects and Mechanism of Metal Ions on Enzymatic Hydrolysis of Wheat Straw after Pretreatment. Bioresources. 13, 2617–2631 (2018). doi: 10.15376/biores.13.2.2617-2631. [Google Scholar]
  35. Megawati, A. Damayanti, R. D. A. Putri, P. N. Sari, and D. Fidyani, Kinetics study of enzymatic hydrolysis of Tetraselmis chuii using Valjamae model. IOP Conf Ser Mater Sci Eng, 1053, 012044 (2021). doi: 10.1088/1757-899X/1053/1/012044. [CrossRef] [Google Scholar]
  36. I. A. de Souza, D. C. Orsi, A. J. Gomes, and C. N. Lunardi, Enzymatic hydrolysis of starch into sugars is influenced by microgel assembly. Biotechnology Reports. 22, 00342 (2019). doi: 10.1016/j.btre.2019.e00342. [CrossRef] [Google Scholar]
  37. Megawati, A. Damayanti, R. D. A Putri, A. Pratama, and T. Muftidar, Kinetics of Enzymatic Hydrolysis of Passion Fruit Peel using Cellulase in Bio-ethanol Production. Reaktor. 20, 10–17 (2020). doi: 10.14710/reaktor.20.01.10-17. [CrossRef] [Google Scholar]
  38. Z. A. S. Bahlawan, Megawati, B. Triwibowo, A. Damayanti, A. Y. Maulana, D. E. C. Tassabila, R. Ichwan, The Potential Bioethanol Production from the Starch of Breadfruit PeelA Review Case in Indonesia. IOP Conference Series: Earth and Environmental Science, Institute of Physics. 1203, 012038 (2023). doi: 10.1088/1755-1315/1203/1/012038. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.