Open Access
Issue
E3S Web Conf.
Volume 577, 2024
4th International Conference on Applied Sciences (ICAS 2024) “Multidisciplinary Research Collaboration for Environmental, Social, and Governance (ESG) Issues”
Article Number 01008
Number of page(s) 11
Section Environmental Issues
DOI https://doi.org/10.1051/e3sconf/202457701008
Published online 11 October 2024
  1. R.H. Wijffels, M.J. Barbosa, An outlook on microalgal biofuels, science 329, 796 (2010). [CrossRef] [PubMed] [Google Scholar]
  2. M. Chen, Y. Chen, Q. Zhang, Assessing global carbon sequestration and bioenergy potential from microalgae cultivation on marginal lands leveraging machine learning, Science of The Total Environment p. 174462 (2024). [CrossRef] [Google Scholar]
  3. M. Matsumoto, D. Nojima, T. Nonoyama, K. Ikeda, Y. Maeda, T. Yoshino, T. Tanaka, Outdoor cultivation of marine diatoms for year-round production of biofuels, Marine drugs 15, 94 (2017). [CrossRef] [PubMed] [Google Scholar]
  4. S. Vyas, A. Patel, E.N. Risse, E. Krikigianni, U. Rova, P. Christakopoulos, L. Matsakas, Biosynthesis of microalgal lipids, proteins, lutein, and carbohydrates using fish farming wastewater and forest biomass under photoautotrophic and heterotrophic cultivation, Bioresource Technology 359, 127494 (2022). [CrossRef] [PubMed] [Google Scholar]
  5. M. Chen, Y. Chen, Q. Zhang, A review of energy consumption in the acquisition of bio-feedstock for microalgae biofuel production, Sustainability 13, 8873 (2021). [CrossRef] [Google Scholar]
  6. J. Yang, M. Xu, X. Zhang, Q. Hu, M. Sommerfeld, Y. Chen, Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance, Bioresource technology 102, 159 (2011). [CrossRef] [PubMed] [Google Scholar]
  7. T.P. Lam, T.M. Lee, C.Y. Chen, J.S. Chang, Strategies to control biological contaminants during microalgal cultivation in open ponds, Bioresource technology 252, 180 (2018). [CrossRef] [PubMed] [Google Scholar]
  8. E. Menichetti, M. Otto, Energy balance & greenhouse gas emissions of biofuels from a life cycle perspective (2009). [Google Scholar]
  9. U. Suparmaniam, M.K. Lam, Y. Uemura, J.W. Lim, K.T. Lee, S.H. Shuit, Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review, Renewable and Sustainable Energy Reviews 115, 109361 (2019). [CrossRef] [Google Scholar]
  10. K.H. Chowdury, N. Nahar, U.K. Deb, The growth factors involved in microalgae cultivation for biofuel production: a review, Computational Water, Energy, and Environmental Engineering 9, 185 (2020). [Google Scholar]
  11. J.A.V. Costa, M.G. de Morais, in Biofuels from algae (Elsevier, 2014), pp. 1–22 [Google Scholar]
  12. A. Al-Dailami, I. Koji, I. Ahmad, M. Goto, Potential of photobioreactors (pbrs) in cultivation of microalgae, Journal of Advanced Research in Applied Sciences and Engineering Technology 27, 32 (2022). [CrossRef] [Google Scholar]
  13. J. Hoeniges, W. Welch, J. Pruvost, L. Pilon, A novel external reflecting raceway pond design for improved biomass productivity, Algal Research 65, 102742 (2022). [CrossRef] [Google Scholar]
  14. T. Grivalsky`, K. Ranglová, J.A. da Câmara Manoel, G.E. Lakatos, R. Lhotsky`, J. Masojídek, Development of thinlayer cascades for microalgae cultivation: milestones, Folia microbiologica 64, 603 (2019). [CrossRef] [PubMed] [Google Scholar]
  15. B. Ketheesan, N. Nirmalakhandan, Development of a new airlift-driven raceway reactor for algal cultivation, Applied Energy 88, 3370 (2011). [CrossRef] [Google Scholar]
  16. M. Caia, O. Bernard, Q. Béchet, Optimizing co2 transfer in algal open ponds, Algal research 35, 530 (2018). [CrossRef] [Google Scholar]
  17. G. Torzillo, G. Chini Zittelli, Tubular photobioreactors, Algal biorefineries: volume 2: products and refinery design pp. 187–212 (2015). [CrossRef] [Google Scholar]
  18. F. Acién, E. Molina, A. Reis, G. Torzillo, G.C. Zittelli, C. Sepúlveda, J. Masojídek, in Microalgae-based biofuels and bioproducts (Elsevier, 2017), pp. 1–44 [Google Scholar]
  19. N.H. Norsker, M.J. Barbosa, M.H. Vermuë, R.H. Wijffels, Microalgal production—a close look at the economics, Biotechnology advances 29, 24 (2011). [CrossRef] [PubMed] [Google Scholar]
  20. E. Sierra, F.G. Acién, J.M. Fernández, J.L. García, C. González, E. Molina, Characterization of a flat plate photobioreactor for the production of microalgae, Chemical Engineering Journal 138, 136 (2008). [CrossRef] [Google Scholar]
  21. M. Egbo, A. Okoani, I. Okoh, Photobioreactors for microalgae cultivation–an overview, Int J Sci Eng Res 9, 65 (2018). [Google Scholar]
  22. V. Loomba, G. Huber, E. von Lieres, Single-cell computational analysis of light harvesting in a flat-panel photobioreactor, Biotechnology for biofuels 11, 1 (2018). [CrossRef] [PubMed] [Google Scholar]
  23. J. Li, M. Stamato, E. Velliou, C. Jeffryes, S.N. Agathos, Design and characterization of a scalable airlift flat panel photobioreactor for microalgae cultivation, Journal of applied phycology 27, 75 (2015). [CrossRef] [Google Scholar]
  24. C. Ugwu, H. Aoyagi, H. Uchiyama, Photobioreactors for mass cultivation of algae, Bioresource technology 99, 4021 (2008). [CrossRef] [PubMed] [Google Scholar]
  25. A. Saeid, K. Chojnacka, Toward production of microalgae in photobioreactors under temperate climate, Chemical Engineering Research and Design 93, 377 (2015). [CrossRef] [Google Scholar]
  26. Q. Wang, H. Peng, B.T. Higgins, Cultivation of green microalgae in bubble column photobioreactors and an assay for neutral lipids, JoVE (Journal of Visualized Experiments) p. e59106 (2019). [Google Scholar]
  27. C.J. Hulatt, D.N. Thomas, Productivity, carbon dioxide uptake and net energy return of microalgal bubble column photobioreactors, Bioresource technology 102, 5775 (2011). [CrossRef] [PubMed] [Google Scholar]
  28. C.G. Khoo, M.K. Lam, K.T. Lee, Pilot-scale semi-continuous cultivation of microalgae chlorella vulgaris in bubble column photobioreactor (bc-pbr): Hydrodynamics and gas– liquid mass transfer study, Algal research 15, 65 (2016). [CrossRef] [Google Scholar]
  29. C. Zhu, X. Zhai, J. Jia, J. Wang, D. Han, Y. Li, Y. Tang, Z. Chi, Seawater desalination concentrate for cultivation of dunaliella salina with floating photobioreactor to produce β-carotene, Algal research 35, 319 (2018). [CrossRef] [Google Scholar]
  30. H. Park, D. Jung, J. Lee, P. Kim, Y. Cho, I. Jung, Z.H. Kim, S.M. Lim, C.G. Lee, Improvement of biomass and fatty acid productivity in ocean cultivation of tetraselmis sp. using hypersaline medium, Journal of applied phycology 30, 2725 (2018). [CrossRef] [Google Scholar]
  31. L. Harris, S. Tozzi, P. Wiley, C. Young, T.M.J. Richardson, K. Clark, J.D. Trent, Potential impact of biofouling on the photobioreactors of the offshore membrane enclosures for growing algae (omega) system, Bioresource technology 144, 420 (2013). [CrossRef] [PubMed] [Google Scholar]
  32. K. Kim, Z.H. Kim, H. Park, Y. Lee, K. Kim, S. Kang, S.M. Lim, C.G. Lee, Enhancing microalgal biomass productivity in floating photobioreactors with semi-permeable membranes grafted with 4-hydroxyphenethyl bromide, Macromolecular Research 28, 145 (2020). [CrossRef] [Google Scholar]
  33. M. Gross, W. Henry, C. Michael, Z. Wen, Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest, Bioresource technology 150, 195 (2013). [CrossRef] [PubMed] [Google Scholar]
  34. L.B. Christenson, R.C. Sims, Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products, Biotechnology and bioengineering 109, 1674 (2012). [CrossRef] [PubMed] [Google Scholar]
  35. B. Zippel, J. Rijstenbil, T.R. Neu, A flow-lane incubator for studying freshwater and marine phototrophic biofilms, Journal of microbiological methods 70, 336 (2007). [CrossRef] [PubMed] [Google Scholar]
  36. M.B. Johnson, Z. Wen, Development of an attached microalgal growth system for biofuel production, Applied microbiology and biotechnology 85, 525 (2010). [CrossRef] [PubMed] [Google Scholar]
  37. Y.K. Dasan, M.K. Lam, S. Yusup, J.W. Lim, K.T. Lee, Life cycle evaluation of microalgae biofuels production: Effect of cultivation system on energy, carbon emission and cost balance analysis, Science of the total environment 688, 112 (2019). [CrossRef] [Google Scholar]
  38. L.B. Brentner, M.J. Eckelman, J.B. Zimmerman, Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel, Environmental science & technology 45, 7060 (2011). [CrossRef] [PubMed] [Google Scholar]
  39. J. Jonker, A. Faaij, Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production, Applied Energy 102, 461 (2013). [CrossRef] [Google Scholar]
  40. S. Raghuvanshi, V. Bhakar, R. Chava, K. Sangwan, Comparative study using life cycle approach for the biodiesel production from microalgae grown in wastewater and fresh water, Procedia CIRP 69, 568 (2018). [CrossRef] [Google Scholar]
  41. S. Pankratz, M. Kumar, A.O. Oyedun, E. Gemechu, A. Kumar, Environmental performances of diluents and hydrogen production pathways from microalgae in cold climates: Open raceway ponds and photobioreactors coupled with thermochemical conversion, Algal Research 47, 101815 (2020). [CrossRef] [Google Scholar]
  42. C. Xin, M.M. Addy, J. Zhao, Y. Cheng, S. Cheng, D. Mu, Y. Liu, R. Ding, P. Chen, R. Ruan, Comprehensive techno-economic analysis of wastewater-based algal biofuel production: A case study, Bioresource technology 211, 584 (2016). [CrossRef] [PubMed] [Google Scholar]
  43. A. Converti, A.A. Casazza, E.Y. Ortiz, P. Perego, M. Del Borghi, Effect of temperature and nitrogen concentration on the growth and lipid content of nannochloropsis oculata and chlorella vulgaris for biodiesel production, Chemical Engineering and Processing: Process Intensification 48, 1146 (2009). [CrossRef] [Google Scholar]
  44. A. Bhatt, M. Khanchandani, M.S. Rana, S.K. Prajapati, Techno-economic analysis of microalgae cultivation for commercial sustainability: A state-of-the-art review, Journal of Cleaner Production 370, 133456 (2022). [CrossRef] [Google Scholar]
  45. F. Acién, J. Fernández, J. Magán, E. Molina, Production cost of a real microalgae production plant and strategies to reduce it, Biotechnology advances 30, 1344 (2012). [CrossRef] [PubMed] [Google Scholar]
  46. H.M. Zabed, S. Akter, J. Yun, G. Zhang, Y. Zhang, X. Qi, Biogas from microalgae: Technologies, challenges and opportunities, Renewable and Sustainable Energy Reviews 117, 109503 (2020). [CrossRef] [Google Scholar]
  47. A. Molino, S. Mehariya, G. Di Sanzo, V. Larocca, M. Martino, G.P. Leone, T. Marino, S. Chianese, R. Balducchi, D. Musmarra, Recent developments in supercritical fluid extraction of bioactive compounds from microalgae: Role of key parameters, technological achievements and challenges, Journal of CO2 Utilization 36, 196 (2020). [CrossRef] [Google Scholar]
  48. A. Molino, S. Mehariya, A. Iovine, P. Casella, T. Marino, D. Karatza, S. Chianese, D. Musmarra, Enhancing biomass and lutein production from scenedesmus almeriensis: effect of carbon dioxide concentration and culture medium reuse, Frontiers in Plant Science 11, 415 (2020). [CrossRef] [PubMed] [Google Scholar]
  49. S.K. Bhatia, S. Mehariya, R.K. Bhatia, M. Kumar, A. Pugazhendhi, M.K. Awasthi, A. Atabani, G. Kumar, W. Kim, S.O. Seo et al., Wastewater based microalgal biorefinery for bioenergy production: Progress and challenges, Science of the Total Environment 751, 141599 (2021). [CrossRef] [Google Scholar]
  50. J.H. Wang, T.Y. Zhang, G.H. Dao, X.Q. Xu, X.X. Wang, H.Y. Hu, Microalgae-based advanced municipal wastewater treatment for reuse in water bodies, Applied microbiology and biotechnology 101, 2659 (2017). [CrossRef] [PubMed] [Google Scholar]
  51. L. Meier, P. Barros, A. Torres, C. Vilchez, D. Jeison, Photosynthetic biogas upgrading using microalgae: Effect of light/dark photoperiod, Renewable energy 106, 17 (2017). [CrossRef] [Google Scholar]
  52. S. Khan, I. Shamshad, M. Waqas, J. Nawab, L. Ming, Remediating industrial wastewater containing potentially toxic elements with four freshwater algae, Ecological Engineering 102, 536 (2017). [CrossRef] [Google Scholar]
  53. Q. Wang, Y. Lu, Y. Xin, L. Wei, S. Huang, J. Xu, Genome editing of model oleaginous microalgae nannochloropsis spp. by crispr/cas9, The Plant Journal 88, 1071 (2016). [CrossRef] [PubMed] [Google Scholar]
  54. J. Xue, Y.F. Niu, T. Huang, W.D. Yang, J.S. Liu, H.Y. Li, Genetic improvement of the microalga phaeodactylum tricornutum for boosting neutral lipid accumulation, Metabolic engineering 27, 1 (2015). [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.