Open Access
Issue
E3S Web Conf.
Volume 578, 2024
XL Siberian Thermophysical Seminar (STS-40)
Article Number 01023
Number of page(s) 9
DOI https://doi.org/10.1051/e3sconf/202457801023
Published online 14 October 2024
  1. G.L. Soloveichik, Flow Batteries: Current Status and Trends. Chem. Rev. 115 (20), 11533–11558 (2015) [CrossRef] [PubMed] [Google Scholar]
  2. M.M. Petrov, A.D.Modestov, D.V.Konev, A.E.Antipov, P.A. Loktionov et al. Redox flow batteries: role in modern electric power industry and comparative characteristics of the main types. Russ. Chem. Rev. 90 (6), 677-702 (2021) [CrossRef] [Google Scholar]
  3. M. Mourshed, S.M.R. Niya, R. Ojha, G. Rosengarten, J. Andrews, B. Shabani. Carbon- based slurry electrodes for energy storage and power supply systems. Energy Storage Mater. 40, 461-489 (2021) [CrossRef] [Google Scholar]
  4. S Sasi, A Murali, S.V. Nair, A.S. Nair, K.R.V. Subramanian, The effect of graphene on the performance of an electrochemical flow capacitor. J. Mater. Chem. A. 3, 2717-2725 (2015) [CrossRef] [Google Scholar]
  5. D. Rueda-García, M.R. Rodríguez-Laguna, E. Chávez-Angel, D. P. Dubal, Z. Cabán-Huertas, From Thermal to Electroactive Graphene Nanofluids. Energies. 12 (23), 4545 (2019) [CrossRef] [Google Scholar]
  6. R. Zhang, H. Zhou, P. Sun, Q. Ma, M. Lu, H. Su, W. Yang, Q. Xu, Research progress on nanoparticles applied in redox flow batteries. Battery Energy 1, 4 (2022) [Google Scholar]
  7. L. Sanz, J. Palma, E. García-Quismondo, M. Anderson, The effect of chloride ion complexation on reversibility and redox potential of the Cu(II)/Cu(I) couple for use in redox flow batteries, J. Power Sources. 224 , 278-284 (2013) [CrossRef] [Google Scholar]
  8. L. Sanz, D.E. Magdalena, J. Palma, K. Kontturi, Description and performance of a novel aqueous all-copper redox flow battery. J. Power Sources 268 (0), 121-128 (2014) [CrossRef] [Google Scholar]
  9. L. Wei, T.S. Zhao, L. Zeng, X.L. Zhou, Y.K. Zeng , Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries, Appl. Energy. 180 (15) 386-391(2016) [CrossRef] [Google Scholar]
  10. G.F. Smaisim, D.B. Mohammed, A.M. Abdulhadi, K.F., Uktamov, F.H. Alsultany, S.E. Izzat, ..., E. Kianfar, RETRACTED ARTICLE: Nanofluids: properties and applications. J Sol-Gel Sci Techn. 104, 1 (2022) [CrossRef] [Google Scholar]
  11. A.G.N. Sofiah, M. Samykano, A.K. Pandey, K. Kadirgama, K. Sharma, R. Saidur Immense impact from small particles: Review on stability and thermophysical properties of nanofluids. Sustain. Energy Technol. Assessments 48, 101635 (2021) [CrossRef] [Google Scholar]
  12. D. Dey, D.S. Sahu, A review on the application of the nanofluids. Heat Transf. 50(2), 1113-1155 (2021) [CrossRef] [Google Scholar]
  13. K. Kadirgama, Nanofluid as an alternative coolant in machining: a review. J. Adv. Res. Fluid Mech. Therm. Sci. 69(1), 163-173 (2020) [CrossRef] [Google Scholar]
  14. D.K. Madheswaran, S. Vengatesan, E.G. Varuvel, T. Praveenkumar, S. Jegadheeswaran, A. Pugazhendhi, J. Arulmozhivarman, Nanofluids as a coolant for polymer electrolyte membrane fuel cells: Recent trends, challenges, and future perspectives. J. Clean. Prod. 138763 (2023). [Google Scholar]
  15. J. Pereira, R. Souza, A. Moita, A. Moreira, Nanofluids and Ionic Fluids as Liquid Electrodes: An Overview on Their Properties and Potential Applications. Processes. 11(11), 3189 (2023) [CrossRef] [Google Scholar]
  16. A.V. Zaikovskii, T.Y. Kardash, B.A. Kolesov, O.A. Nikolaeva, Graphene, SiC and Si Nanostructures Synthesis During Quartz Pyrolysis in Arc-Discharge Plasma. Phys. Status Solidi A. 216, 1900079 (2019) [CrossRef] [Google Scholar]
  17. H. Golnabil, M.R. Matloob, M. Bahar, M. Sharifian. Investigation of electrical conductivity of different water liquids and electrolyte solutions. Iran. Phys. J., 3-2, 24-28 (2009) [Google Scholar]
  18. V.A. Markel, Introduction to the Maxwell Garnett approximation: tutorial, J. Opt. Soc. Am. A 33, 1244-1256 (2016) [NASA ADS] [CrossRef] [Google Scholar]
  19. J.C. Maxwell, A Treatise on Electricity and Magnetism, 2nd Ed., 1 (Clarendon Press, Oxford, U.K., 1881) [Google Scholar]
  20. G.K. Poongavanam, S. Duraisamy, V.S. Vigneswaran, V. Ramalingam, Review on the electrical conductivity of nanofluids: Recent developments. Mater. Today Proc. 39, 1532-1537 (2021) [CrossRef] [Google Scholar]
  21. S. Aberoumand, P. Woodfield, G. Shi, T.K. Nguyen, H.Q. Nguyen, Q. Li,..., D.V. Dao, Thermo-electro-rheological behaviour of vanadium electrolyte-based electrochemical graphene oxide nanofluid designed for redox flow battery. J. Mol. Liq. 338, 116860 (2021) [CrossRef] [Google Scholar]
  22. A.A. Minea, A Review on Electrical Conductivity of Nanoparticle-Enhanced Fluids. Nanomaterials (Basel). 9(11), 1592 (2019) [CrossRef] [PubMed] [Google Scholar]
  23. H. Ohshima, Electrical Conductivity of a Concentrated Suspension of Spherical Colloidal Particles. J. Colloid Interface Sci, 212(2), 443–448 (1999) [CrossRef] [Google Scholar]
  24. H. Semat, R. Katz, “Physics, Chapter 28: Electrical Conduction in Liquids and Solids” (1958). Robert Katz Publications. 154. [Google Scholar]
  25. M.F. Zawrah, R.M. Khattab, L.G. Girgis, H. El Daidamony, A.R.E. Abdel, Stability and electrical conductivity of water-base Al2O3 nanofluids for different applications. HBRC J. 12, 227–234 (2016) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.