Open Access
Issue |
E3S Web Conf.
Volume 578, 2024
XL Siberian Thermophysical Seminar (STS-40)
|
|
---|---|---|
Article Number | 01027 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/e3sconf/202457801027 | |
Published online | 14 October 2024 |
- A. Lefebvre, Gas Turbine Combustion, 2nd ed. (Taylor and Francis. USA, 1999). [Google Scholar]
- S. Correa, Power generation and aeropropulsion gas turbines: From combustion science to combustion technology. Symposium (International) on Combustion. 27 (2), 1793. (1998). https://doi.org/10.1016/S0082-0784(98)80021-0 [CrossRef] [Google Scholar]
- N. Syred and J. Beer, Combustion in swirling flows: a review. Combust. Flame. 23 (2), 143 (1974). https://doi.org/10.1016/0010-2180(74)90057-1 [CrossRef] [Google Scholar]
- T. Lieuwen, Unsteady combustor physics, 2nd ed. (Cambridge University Press, UK, 2021) [CrossRef] [Google Scholar]
- T. O’Doherty, O. Lucca-Negro. Vortex breakdown: a review. Prog. Energy Combust. Sci. 27 (4), 431 (2001). https://doi.org/10.1016/S0360-1285%2800%2900022-8 [CrossRef] [Google Scholar]
- K. Oberleithner, M. Sieber, C. Nayeri, C. Paschereit, C. Petz, H. Hege, B. Noack and I. Wygnanski, Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J. Fluid Mech. 679, 383 (2011). [CrossRef] [Google Scholar]
- T. Lieuwen, H. Torres, C. Johnson and B. Zinn. A mechanism of combustion instability in lean premixed gas turbine combustors. J. Eng. Gas Turbines Power, 123, 182 (2001) https://doi.org/10.1115/1.1339002 [CrossRef] [Google Scholar]
- S. Terhaar, O. Krüger. and C. Paschereit, Flow field and flame dynamics of swirling methane and hydrogen flames at dry and steam diluted conditions. J. Eng. Gas Turbines Power, 137 (4), 041503 (2015). https://doi.org/10.1115/1.4028392 [CrossRef] [Google Scholar]
- R. Balachandran, B. Ayoola, C. Kaminski, A. Dowling and E. Mastorakos, Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations. Combust. Flame, 143 (1-2), 37 (2005). https://doi.org/10.1016/j.combustflame.2005.04.009 [CrossRef] [Google Scholar]
- K. Oberleithner, M. Stöhr, S. Im, C. Arndt and A. Steinberg, Formation and flame- induced suppression of the precessing vortex core in a swirl combustor: experiments and linear stability analysis. Combust. Flame. 162 (8), 3100 (2015). https://doi.org/10.1016/j.combustflame.2015.02.015 [CrossRef] [Google Scholar]
- E. Palkin, M. Hrebtov, D. Slastnaya, R. Mullyadzhanov, L. Vervisch, D. Sharaborin, A. Lobasov and V. Dulin, Influence of a central jet on isothermal and reacting swirling flow in a model combustion chamber. Energies. 15 (5), 1615 (2022). https://doi.org/10.3390/en15051615 [CrossRef] [Google Scholar]
- B. Janus, A. Dreizler and J. Janicka, Experimental study on stabilization of lifted swirl flames in a model GT combustor. Flow Turbul. Combust. 75, 293 (2005). https://doi.org/10.1007/s10494-005-8583-4 [CrossRef] [Google Scholar]
- D. Lilly, A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A: Fluid Dyn. 4 (3), 633 (1992). https://doi.org/10.1063/1.858280 [CrossRef] [Google Scholar]
- H. Weller, G. Tabor, H. Jasak and C. Fureby, A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in physics, 12 (6), 620-631 (1998). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.