Open Access
Issue
E3S Web Conf.
Volume 579, 2024
2024 11th International Conference on Civil and Urban Engineering (ICCUE 2024)
Article Number 03002
Number of page(s) 13
Section Sustainable Urban Engineering and Building Management
DOI https://doi.org/10.1051/e3sconf/202457903002
Published online 18 October 2024
  1. Federal Agency for Civic Education, Jahrhunderthochwasser 2021 in Deutschland, available: https://www.bpb.de/kurz-knapp/hintergrund-aktuell/337277/jahrhunderthochwasser-2021-in-deutschland/ (last accessed: Mar. 28 2024) [Google Scholar]
  2. K. Fial and R. Rossberg, Naturgefahrenreport 2023 – Die Schaden-Chronik der deutschen Versicherer (2023) [Google Scholar]
  3. T. Martini, J. Rosin, J. Z. Vetter, S. Neuhäuser, E. Lukau, F. Catal, M. Boigk, M. Simon, M. Monteforte, M. Gerold, W. Phung, S. Dietze, J. Finger, P. Brausewetter, S. Nicolai, Towards a modular co-simulation framework for the assessment of cascading effects among critical infrastructures and the impact on citizens, in: Proceedings of 63rd ESReDA Seminar on Resilience assessment: Methodological challenges and applications to critical infrastructures, 25-26 October 2023, Ispra (to be published) [Google Scholar]
  4. H. Maiwald, J. Schwarz, L. Abrahamczyk, C. Kaufmann: Das Hochwasser 2021: Ingenieuranalyse der Bauwerksschäden, Bautechnik 99(12), pp. 878–890 (2022) [Google Scholar]
  5. K. Pitilakis, H. Crowley, A. M. Kaynia, SYNER-G: Typology Definition and Fragility Functions for Physical Elements at Seismic Risk, Dordrecht: Springer Netherlands (2014) [CrossRef] [Google Scholar]
  6. R. Maio, G. Tsionis, Seismic fragility curves for the European building stock – Review and evaluation of existing fragility curves, European Commission, Joint Research Centre, Publications Office (2015) [Google Scholar]
  7. Landesbetrieb Geoinformation und Vermessung, Geo-Online, available: https://geoportal-hamburg.de/geo-online/ (last accessed: Mar. 28 2024) [Google Scholar]
  8. Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen, FIS-Broker, available: https://fbinter.stadt-berlin.de/fb/index.jsp (last accessed: Mar. 28 2024) [Google Scholar]
  9. Landesanstalt für Umwelt Baden-Württemberg, Datenund Kartendienst der LUBW, available: https://udo.lubw.baden-wuerttemberg.de/public/ (last accessed: Apr. 2 2024) [Google Scholar]
  10. M. Steinhausen, S. Lüdtke, K. Schröter, R. Figueiredo, H. Kreibich, Das probabilistische Hochwasserschadensmodell für Wohngebäude – BN-FLEMOps, Hydrologie und Wasserbewirtschaftung, 64(4), pp. 188–199 (2020) [Google Scholar]
  11. D. Wagenaar, S. Lüdtke, K. Schröter, L. M. Bouwer, H. Kreibich, Regional and temporal transferability of multivariable flood damage models, Water Resources Research, 54(5), pp. 3688–3703 (2018) [CrossRef] [Google Scholar]
  12. D. J. Wagenaar, K. M. de Bruijn, L. M. Bouwer, H. de Moel, Uncertainty in flood damage estimates and its potential effect on investment decisions, Nat. Hazards Earth Syst. Sci., 16(1), pp. 1–14 (2016) [CrossRef] [Google Scholar]
  13. R. Schinke, A. Kaidel, S. Golz, T. Naumann, J. López-Gutiérrez, S. Garvin, Analysing the effects of flood-resilience technologies in urban areas using a synthetic model approach, IJGI, 5(11), p. 202 (2016) [CrossRef] [Google Scholar]
  14. M. Neubert, T. Naumann, J. Hennersdorf, J. Nikolowski, The Geographic information system‐based flood damage simulation model HOWAD, J Flood Risk Management, 9(1), pp. 36–49 (2016) [CrossRef] [Google Scholar]
  15. H. A. Gallegos, J. E. Schubert, B. F. Sanders, Structural damage prediction in a highvelocity urban dam-break flood: field-scale assessment of predictive skill, J. Eng. Mech., 138(10), pp. 1249–1262 (2012) [CrossRef] [Google Scholar]
  16. H. Maiwald, J. Schwarz, Ermittlung von Hochwasserschäden unter Berücksichtigung der Bauwerksverletzbarkeit: Erweitertes EDAC-Hochwasserschadensmodell, 2nd ed. Ilmtal-Weinstraße: Bauhaus-Universitätsverlag Weimar (2023) [Google Scholar]
  17. T. Naumann, C. Rubin, Ermittlung potenzieller Hochwasserschäden in Pirna nach dem gebäudetypologischen VERIS Elbe-Ansatz, in Hochwasserschadensinformationen: Neues und Bewährtes. DWA-seminar, 8 April 2008, Dresden, pp. 1–16 (2008) [Google Scholar]
  18. S. Xiao, N. Li, X. Guo, Analysis of flood impacts on masonry structures and mitigation measures, J Flood Risk Management, 14(4), pp. 1–19 (2021) [CrossRef] [Google Scholar]
  19. S. Belliazzi, G. P. Lignola, M. Di Ludovica, A. Prota, Preliminary tsunami analytical fragility functions proposal for Italian coastal residential masonry buildings, Structures, 31, pp. 68–79 (2021) [CrossRef] [Google Scholar]
  20. S. Liu, W. Zheng, Z. Zhou, G. Zhong, Y. Zhen, Z. Shi, Flood risk assessment of buildings based on vulnerability curve: A case study in Anji County, Water, 14(21), p. 3572 (2022) [CrossRef] [Google Scholar]
  21. M. Nale, F. Minghini, A. Chiozzi, A. Tralli, Fragility functions for local failure mechanisms in unreinforced masonry buildings: a typological study in Ferrara, Bulletin of Earthquake Engineering, 19, pp. 6049–6079 (2021) [CrossRef] [Google Scholar]
  22. R. De Risi, F. Jalayer, F. De Paola, I. Iervolino, M. Giugni, M.E. Topa, E. Mbuya, A. Kyessi, G. Manfredi, P. Gasparini, Flood risk assessment for informal settlements, Natural Hazards, 69, pp. 1003–1032 (2013). [CrossRef] [Google Scholar]
  23. M. Pregnolato, A. Ford, S. M. Wilkinson, R. J. Dawson, The impact of flooding on road transport: A depth-disruption function, Transportation Research Part D: Transport and Environment, 55, pp. 67–81 (2017) [CrossRef] [Google Scholar]
  24. Q. Fang, S. Liu, G. Zhong, H. Zhang, J. Liang, Y. Zhen, Nonlinear simulation and vulnerability analysis of masonry structures impacted by flash floods, Shock and Vibration, 2021, 20 pages (2021). [Google Scholar]
  25. J. Rosin, C. Butenweg, P. Cacciatore, N. Boesen, Investigation of the seismic performance of modern masonry buildings during the Emilia Romagna earthquake series, Mauerwerk, 22(4), pp. 238–250 (2018) [CrossRef] [Google Scholar]
  26. A. Stocchi, C. Giry, S. Capdevielle, I. Zentner, E. Nayman, F. Ragueneau, A simplified non-linear modelling strategy to generate fragility curves for old masonry buildings, Computers & Structures, 254, p. 106579 (2021) [CrossRef] [Google Scholar]
  27. O. M. Nofal, J. W. van de Lindt, Minimal building flood fragility and loss function portfolio for resilience analysis at the community level, Water, 12(8), p. 2277 (2020) [CrossRef] [Google Scholar]
  28. S. Waenpracha, P. Foytong, A. Suppasri, S. Tirapat, N. Thanasisathit, P. Maneekul, T. Ornthammarath, Development of fragility curves for reinforced-concrete building with masonry infilled wall under tsunami, Advances in Civil Engineering, 2023, pp. 1–15 (2023) [CrossRef] [Google Scholar]
  29. A. Mebarki, N. Valencia, J.L. Salagnac, B. Barroca, Flood hazards and masonry constructions: a probabilistic framework for damage, risk and resilience at urban scale, Natural Hazards, 12, pp. 1799–1809 (2012). [Google Scholar]
  30. G. Capparelli, F.S. Liguori, A. Madeo, P. Versace, A rapid numerical-based vulnerability assessment method for masonry buildings subject to flood, International Journal of Disaster Risk Reduction, 97, pp. 104001 (2023). [CrossRef] [Google Scholar]
  31. J. Z. Vetter, S. Neuhäuser, J. Rosin, A. Stolz, A categorization and parametric modeling approach using open geodata enabling building vulnerability assessment, in Proceedings of the 19th International 3D GeoInfo Conference 2024, 1-5 July 2024, Vigo (to be published) [Google Scholar]
  32. S. Neuhäuser, J. Z. Vetter, J. Rosin, A. Stolz, A computational simulation framework for probabilistic vulnerability analysis of the built environment, in Proceedings of the International Workshop on Intelligent Computing in Engineering (EG-ICE 2024), 1-5 July 2024, Vigo (to be published) [Google Scholar]
  33. J. F. Geist, K. Kürvers, Das Berliner Mietshaus 1862 – 1945, Prestel (1984) [Google Scholar]
  34. R. Ahnert, K. H. Krause, Typische Baukonstruktionen von 1860 bis 1960 Band 1., Huss, Verlag Bauwesen (2009) [Google Scholar]
  35. S. Peters, A. Trummer, DDMaS Digitizing the design of masonry structures, Technischer Erläuterungsbericht zum Endbericht, TU Graz (2021) [Google Scholar]
  36. M. Angelillo, P. B. Lourenço, G. Milani, Masonry behaviour and modelling, Mechanics of Masonry Structures, International Centre for Mechanical Sciences, 551, Springer, p.1–26 (2014) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.